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Abstract. Let (E, h) → (Σ, ωΣ) Hermitian vector bundle equipped with a holomorphic structure
∂E determining a holomorphic vector bundle E , where the base Σ is a Riemann surface, and ωΣ

is a Kähler metric of constant scalar curvature. Consider the projectivisation P(E). We write J for
complex structure on this manifold, and ωk(h, J) for the adiabatic Kähler metrics determined by

FOP(E)(1) + ikπ∗ωΣ,

where FOP(E)(1) is the curvature of the hyperplane line bundle over P(E), π is the natural map from
the projectivisation, and k >> 0. Then if E is simple and moreover satisfies a natural condition on
its Harder-Narasimhan filtration, we prove the longtime existence of the Calabi flow starting from
ωk(h, J), verifying a conjecture of Chen in this special case.

1. Introduction

A central problem in Kähler geometry is to construct metrics of constant scalar curvature (cscK
metrics) within a fixed Kähler class [ω]. More particularly, one of the main aims of the field is
to characterise the existence of such metrics by an algebraic geometric stability condition. This
problem was solved in the special case of Kähler-Einstein metrics by Chen-Donaldson-Sun in [CDS],
and is completely analogous to the more classical Kobayashi-Hitchin correspondence, proven in the
1980s by Donaldson, and Uhlenbeck-Yau (see [DO1], [DO2], and [UY]). The latter result, also known
as the Donaldson-Uhlenbeck-Yau (DUY) theorem, characterises the existence of Hermitian-Einstein
metrics, or equivalently Hermitian-Yang-Mills (HYM) connections; metrics (connections) whose
contracted curvature is a constant multiple of the identity, on a holomorphic vector bundle over a
Kähler manifold. The general cscK problem remains open, and even the precise stability condition
that should be required remains elusive, but there are known algebraic-geometric obstructions to
existence.

Because these canonical metrics arise as the absolute minimisers of energy functionals on certain
infinite dimensional spaces, one approach to the above problems is to consider their the gradient
flows and try to prove their longtime existence and convergence to a minimiser, whenever a suitable
algebraic-geometric condition is met. Due to the infinite dimensionality of the spaces in question,
this is in general a difficult problem, but in the case of HYM connections, this idea was successfully
carried out by Donaldson in [DO1] and [DO2] (at least in the projective setting), where the correct
condition on the bundle is the classical Mumford-Takemato slope stability. The gradient flow is
known as the Yang-Mills flow. More generally, as discussed below, even in the case of an unstable
bundle, the longtime existence and convergence of this flow is in some sense completely understood
on a general Kähler manifold. The gradient flow designed to find cscK metrics when they exist is
known as the Calabi flow. This is a fourth order parabolic equation for a path of Kähler metrics,
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and in contrast to the Yang-Mills flow, relatively little is known about it in complex dimensions
>1. It is much more difficult to show that it achieves its goal of finding the cscK metric when one
exists, before even considering the study of the longtime existence and asymptotic properties in
general. Indeed, when the complex dimension is at least 2, there are very few examples of complex
manifolds such that the flow starting from a given Kähler metric has been shown to exist for all
time. The purpose of the present paper is to rectify this situation somewhat by attacking the long-
time existence problem in the special case of a projective vector bundle over a Riemann surface,
where we may exploit the existence and long-time behaviour of Yang-Mills flow.

1.1. The gradient flows in general. In both of the problems discussed above there are two
different points of view one may take. In the cscK case, one may fix a complex manifold (X,J) and
look for a compatible cscK metric gJ (or Kähler form ωJ), or fix a symplectic form ω and search
for a compatible integrable almost complex structure J(ω) so that the resulting metric g(ω, J(ω))
is cscK. Similarly, on a complex vector bundle E over a fixed Kähler manifold (X,ω), one may fix
either the holomorphic structure (equivalently d-bar operator) E = (E, ∂E) or the hermitian metric
h, and vary the other structure, with the aim of finding either an Hermitian-Einstein metric hE , or
an HYM holomorphic structure (equivalently Chern connection) A = (∂E , h).

This duality gives rise to two parallel variational problems corresponding to energy functionals
on two different spaces. Namely, in the bundle setting, the most natural functional to consider for
a fixed Hermitian bundle (E, h) is the Yang-Mills energy

YM : A1,1
h (E)→ R(1.1)

A →
�
X
|FA|2 dvolg(ω)

where A1,1
h (E) is the space of integrable, metric connections. In the cscK problem, if we fix a Kähler

manifold (X,J0, g, ω) and write J int(X,ω) for the space of ω-compatible integrable almost complex
structures, then the natural functional is the Calabi energy:

C : J int(X,ω)→ R(1.2)

J →
�
X

(Scal(J))2 dvolg,

where Scal(J) is the scalar curvature of the metric associated to ω and J . Then HYM connections
and cscK metrics respectively arise as the absolute minimisers of these functionals.

The negative gradient flows of these functionals are given by

(1.3) ∂At
∂t

= −d∗AtFAt

and

(1.4) dJt
dt

= −1
2JtDJtScal(Jt)),

or equivalently
dJt
dt

= 1
2LRe∇1,0Scal(Jt)Jt.

Equation 1.3 is known as the Yang-Mills flow. Equation 1.4 is implicit in the work of Donaldson
(see [DO3]), but to the author’s knowledge, it first appeared explicitly in the paper [CS] by Chen
and Sun, and so we will refer to it as the Chen-Sun flow.

It is convenient for many purposes (again as in [DO1] and [DO2]), to take the alternative point
of view and consider certain functionals on the space of Hermitian metrics Herm+(E) and Kähler
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potentials Hω such that the Hermitian-Einstein metrics and cscK metrics are global minimisers.
These two functionals called the Donaldson functional and the Mabuchi energy respectively, are
slightly more difficult to describe, but their gradient flows are easy to write down and are given by:

(1.5) h−1
t

∂ht
∂t

= −2
(
ΛωF(∂E ,ht) − µω(E)IdE

)
and

(1.6) ∂ωt
∂t

= −i∂J∂JScal(ωt),

where µω(E) is the slope of the bundle E and ωt = ω+i∂J∂Jφt, for a some path of Kähler potentials
φt. Equation 1.5 is called the Hermitian-Yang-Mills flow (or Donaldson heat flow), and was
employed by Donaldson in [DO1] to prove the long-time existence of Equation 1.3, on a general
Kähler manifold, a critical first step in the proof of the DUY theorem. Equation 1.6 is built to
find CSK metrics, and is the main object of study in this paper. It is called the Calabi flow. It’s
clear that the fixed points of these flows are precisely the Hermitian-Einstein and cscK metrics
respecitively.

In each of these problems, there is a natural groups of symmetries. In the HYM problem we may
consider the group G(E, h), of unitary gauge transformations, which are smooth isomorphisms of
E preserving the metric h. In the cscK case one may consider G(X,ω), the group of Hamiltonian
symplectomorphisms of the symplectic manifold (X,ω). The actions of G(E, h) and G(X,ω) preserve
the spaces A1,1

h (E) and J int(X,ω), as well as the two flows 1.3 and 1.4. The two functionals defined
above descend to the quotients by these actions.

Equations 1.3 and 1.4 and Equations 1.5 and 1.6 are equivalent in the sense that given solutions
to the former one may construct solutions to the latter in a natural way, and the converse is true
up to the action of the of the groups G(E, h) and G(X,ω) (see either [DO1] Section 1.1, [DOKR]
Section 6.3.1, or also Section 3.4 below for the Yang-Mills flow, and [CS] Lemma 5.1 for Calabi
flow). Note that equations 1.5 and 1.6 are parabolic, whereas equations 1.3 and 1.4 are not due to
the invariance under the symmetry groups. The advantage of the first two equations however, is
that whereas the HYM flow and the Calabi flow must blow up in infinite time in the case that no
canonical metric exists, their analogues with moving holomorphic structure may still converge in
the absence of such a fixed point.

Indeed, for the Yang-Mills flow this is a well-studied problem. Using deep gauge theoretic results
of Uhlenbeck see [U1] and [U2] one may see easily that on a general Kähler manifold, a subsequence
along this flow has a limit in a certain generalised sense. The limiting connection can be singular
in complex dimensions ≥ 3, and can live on a different topological bundle if dimC = 2. Moreover
the convergence must take "bubbling" phenomena into account. When the base is a Riemann sur-
face however, these phenomena do not appear, and the convergence is in the usual C∞ sense.
Going further Daskalapoulos [D] proved that in fact the limiting connection is independent of
the subsequence chosen, and the flow converges to a connection determined by a certain canonical
algebraic-geometric object derived from the Harder-Narasimhan filtration of the initial holomorphic
bundle E0 (see Theorem 3.5 below). In particular, the limit will in general merely be a critical point
of the functional 1.1, a so-called Yang-Mills connection, when the bundle E0 is not stable, rather
than a minimiser. The Yang-Mills connections are direct sums of Hermitian-Yang-Mills connections
on direct summands with possibly different slopes. In general then, the holomorphic structure in-
duced by this limiting connection will be different than that of the original bundle; this phenomenon
is the well-known "jumping" of holomorphic structures. There are also generalisations of the result
of Daskalapoulos to higher dimensions that deal with bubbling and the various singularities that
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occur (see [DW1], [DW2], [S], [SW]). In the event that the bundle admits a Yang-Mills connec-
tion already, these theorems imply the convergence of the flow to this connection. In this case the
jumping phenomenon does not occur.

The theory of cscK metrics and the Calabi flow is far less developed, although conjecturally a
similar sort of picture exists. In the first place, there is no analogue of the DUY theorem, and
although one expects the existence problem to again be equivalent to some notion of stability (this
is commonly known as the Donaldson-Tian-Yau conjecture), it remains unclear what the precise
condition is, as K-stability, which is sufficient in the Kähler -Einstein problem (this is precisely the
CDS theorem) is unlikely to be sufficient in general (see [ACGTF]). A good replacement candidate
was given by Szekelyhidi in [SZ2]. Still more generally, one could also consider the analogue of the
Yang-Mills connections in this setting, which are the critical points of the functional 1.2, namely,
solutions of the equation

(1.7) LRe∇1,0Scal(J)J = 0.

The resulting Kähler metrics are known as extremal metrics.
Even less is known about the flow. Indeed even longtime existence is, in general unknown (see

the discussion of Chen’s conjecture below). Notice that the fixed points of the flow 1.4 are precisely
the solutions to 1.7. When such a critical point in the isomorphism class of a complex structure J0
exists, we expect it to be realised as the limit of the Chen-Sun flow. More generally, if any such
holomorphic structure exists, then the Chen-Sun flow should converge to it starting from any J0,
where now the same jumping phenomenon as in the Yang-Mills case will occur. More precisely, we
have the following conjectures.

Conjecture 1.1. (Chen) The Calabi flow, starting from any Kähler metric exists for all time.

Conjecture 1.2. (see [DO3]) (Donaldson) Let (X, J0, ω0, g0) be a Kähler manifold. Given a long-
time solution ωt to Calabi flow starting from ω0 (inducing a solution Jt to equation 1.4) one of the
following four conditions is satisfied:

• A cscK metric exists and Calabi flow converges to it.
• An extremal holomorphic structure J∞ exists in the isomorphism class of J0 and equation
1.4 converges to J∞.
• An extremal holomorphic structure J∞ exists in a different isomorphism class, and equation
1.4 converges to J∞, giving rise to an extremal metric on on a different Kähler manifold
with the same underlying smooth structure.
• The equation 1.4 converges to some sort of singular complex structure J∞.

The author has been unable to track down a precise reference for the first conjecture, but it
is widely acknowledged to be due to X. Chen. Progress towards proofs of conjectures 1.1 and
1.2 has been slow so far. Both conjectures are known to be true in the case of Riemann surfaces
(see [C], [Ch]), where it is clearly the first case of Conjecture 1.2 that is satisfied. For complex
dimension greater than one, very few general results are known even about Chen’s conjecture. The
short-time existence of Calabi flow is known (see [CH]). The strongest results proven to date, also
from [CH], are that the flow exists for all time and converges to a cscK metric when it is started
sufficiently close to such a metric, and will exist for all time if the Ricci curvature remains bounded.
Particular examples where Conjecture 1.1 is true may be found in [CH2], [FH], and [SZ]. To the
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author’s knowledge this is essentially an exhaustive list of known example, and all of these exploit
very particular symmetries of the geometries under consideration.

In the last three cases of Conjecture 1.2, the stated convergence should exhibit the failure of
stability in a natural way, namely the limit should be the central fibre of a destabilising "test
configuration". By analogy with the Yang-Mills setting, one might also expect the last case to
give rise to a singular extremal metric in a sufficiently general sense. Some progress towards this
conjecture has been made in [CSW] and [LWZ].

1.2. Ruled manifolds over Riemann surfaces. Let (E, h) → (Σ, ωΣ), be an Hermitian vector
bundle where the base Σ is a Riemann surface, and ωΣ is a metric of constant scalar curvature. If
we fix a ∂E operator on E, this determines a holomorphic vector bundle E . If we write OP(E)(1) for
the hyperplane bundle over the projectivisation P(E), then for sufficiently large k, the two forms
FOP(E)(1) + ikπ∗ωΣ, where FOP(E)(1) is the curvature of OP(E)(1), equipped with the metric induced
by h, determine Kähler metrics on P(E). In this paper we will study Conjecture 1.1 for the flow
starting from these metrics.

1.3. Adiabatic limits, and previous results. The basic idea to prove long-time existence in this
case is the notion of an adiabatic limit. This technique has been employed succesfully in a large
range of geometric situations, and particularly in the construction of canonical Kähler metrics on
various kinds of fibrations. One wants to solve an equation of the form F (g) = 0, and by stretching
the base by a factor k (as we have done in our definition of ωk(h, J) above), we produce a family
of metrics and therefore obtain a family of equations of the form F (gk) = 0. The adiabatic limit is
the equation obtained by formally setting k =∞, and may be thought of as approximation to the
original equation for large k. With a solution to this equation in hand, we can in priniciple obtain
a genuine solution to original equation for large enough k by using the implicit function theorem
to perturb the adiabatic solution.

The first result in Kähler geometry along these lines was that of Hong [H]. He considers the
fundamental question of when the manifold P(E) admits a cscK metric. Here the function F is the
scalar curvature (and the metric gk is our adiabatic metric), and by expanding the scalar curvature
in powers of k−1 one may see that the adiabatic limit of this equation is precisely the Hermitian-
Einstein equation. Hong’s precise theorem is that for sufficiently large k the class [ωk(h, J)] admits
such a metric of constant scalar curvature if E is simple and admits an Hermitian-Einstein metric,
and the base manifold Y (which in his case is allowed to be of arbitrary dimension), admits no
holomorphic vector fields. By the DUY theorem, the hypotheses on E are exactly the hypothesis
that E is slope stable. In a later paper [H3] Hong is able to relax the assumption on the simplicity
of the bundle and the existence of vector fields on Y , by instead assuming the vanishing of a certain
Futaki invariant.

A construction of cscK metrics on fibrations X → Σ, where both Σ and the fibres of X are
Riemann surfaces of genus ≥ 2 was given in [F] by Fine. It is based on the same geometric idea,
although the details differ substantially, since the fibres of X admit moduli in this case.

Most relevant to the present paper is the article of Brönnle [B], which generalises [H], and
considers the case P(E)→ (Y, ωY ), where Y admits no holomorphic vector fields and ωY is a cscK
metric. It is known by work or Ross and Thomas [RT] that if E is strictly unstable, then P(E)
cannot admit a cscK metric. Brönnle’s theorem is that when E splits as a direct sum

E = E1 ⊕ · · · ⊕ Em,
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of stable bundles Ei, all of which have different slopes µωY (Ei), then the adiabatic classes admit
extremal metrics. Note that the condition on E is just the condition that there is a Yang-Mills
connection that gives a holomorphic structure in the isomorphism class of E (with the additional
restriction on the equality of the slopes). Correspondingly, in this case the adiabatic limit is the
general Yang-Mills equation

d∗AF = 0.
In passing, we mention that a wide ranging generalisation of all of the above results is given by

Dervan and Sektnan (see [DS1], [DS2] and [DS3]). They consider the case of a general holomorphic
submersion X → Y , where Y is a polarised manifold, and X has relatively ample line bundle.
The adiabatic limit in this situation is a new equation, known as the optimal symplectic equation
(respectively extremal symplectic equation), which generalises the notion of the HYM equation
(respectively Yang-Mills equation).

1.4. Overview of the proof. The strategy of proof of all of the above theorems (see for example
[F]), essentially follows the same trajectory, employing the adiabatic limit technique sketched above
in a very precise way. Namely, the idea is to consider either the cscK or the extremal metrics as
the zeros of a smooth map

F : V →W

between two suitably defined Banach spaces. Then given a solution to the adiabatic limit equation,
ωk(h, J) will at least formally provide a solution to F (g) = 0 up to order k−2. In order to obtain
increasingly better approximations to this equation, one adds Kähler potentials to ωk(h, J) in an
attempt to eliminate the various terms of higher and higher orders in k−1. This involves solving
various linear elliptic pdes, the solutions of which are guaranteed by the geometry of the situation
in question. One then shows that the approximation is in fact genuine, in the sense that it holds
in the Banach space norm on W , rather than merely pointwise. Having established this, if one has
suitable control on the linearisation dF0, as well as on F − dF0, then the quantitative version of
the inverse function theorem will give an exact solution to the problem.

To solve Calabi flow, starting from ωk(h, J) on the projectivisation P(E) of our bundle (E, h)→
(Σ, ωΣ), where we have fixed some holomorphic structure ∂E , we would like to follow a similar
strategy. However in all of the above scenarios, the equations under consideration are time inde-
pendent, and in particular elliptic. As far as the authors are aware, the present work is the first
example of a parabolic problem being solved in this way. The parabolic setting throws up several
technical difficulties that do not occur with elliptic equations. First of all, for elliptic equations, the
choice of the spaces V and W is more or less obvious, namely they will be Sobolev spaces with
enough regularity to make things work. Once the geometry of the situation at hand is properly
understood, the standard existence and elliptic regularity results may be applied, so that we ob-
tain solutions to the required linear elliptic equations, with good estimates on the solutions in the
chosen Banach spaces. Thus one may immediately conclude that a formal approximate solution is
an approximate solution in the Banach space sense.

The first questions that one might naively ask are what the adiabatic limit of the Calabi flow
is, and what the correct choice of V and W are for the problem at hand. It is relatively easy to
see that in this case the adiabatic limit, as one might expect, is the HYM flow. That is, if we flow
the metric h according to equation 1.5, then we obtain a path ωk(ht, J) Kähler forms that formally
solves the equation

(1.8) ∂ωk(ht, J)
∂t

+ i∂J∂JScal(ωk(ht, J)) = k−2σ̂k(t),
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where for each t we have a pointwise estimate

|σ̂k(t)| ≤ C,

where C is independent of k. We would like to define some sort of parabolic Sobolev spaces in which
this inequality is true in the parabolic norm. There are several interlocking difficulties in doing this.
First of all, one must to some extent develop the parabolic theory on compact manifolds. One source
for this is the appendix of a paper by Huisken and Polden [HP]. In order to define a suitable norm
that makes the parabolic theory work, a natural idea is to integrate the usual Sobolev norms (and
the Sobolev norms of the derivatives in time) over the real line, but one has to build a certain weight
function into the definition as well to insure the integrability of these quantities. In [HP] this is
just an exponential function, because in their applications exponential convergence at infinity is
guaranteed. One now encounters a problem, because we want to show that σ̂k(t) is actually bounded
in this norm when k is large. However this quantity depends on the HYM flow, which blows up in
infinite time unless the holomorphic bundle E is (poly)stable.

The way out is to change viewpoints, and consider the Yang-Mills flow, equation 1.3, instead
(strictly speaking one must work with a sped up version). In other words we consider the path of
metrics ωk(h, Jt), where Jt is the holomorphic structure on the smooth manifold P(E) corresponding
to the connection At on E along the flow. The flow At is determined entirely by a path of complex
gauge transformations gt; that is At = g∗t (A0) for some gt ∈ GC, where GC is the group of smooth
automorphisms of E. Since gt also relates the Yang-Mills and Hermitian-Yang-Mills flow pictures,
for the diffeomorphisms g̃t of P(E) that they induce, we may write

g̃∗t (ωk(h, Jt)) = ωk(ht, J).

The path of metrics ωk(h, Jt) therefore gives a solution of equation 1.8 up to the diffeomorphisms
g̃t, or more precisely, the equation

(1.9) ∂ωk(h, Jt)
∂t

+ i∂Jt∂JtScal(ωk(h, Jt)) + LVt (ωk(h, Jt)) = k−2σk(t),

where Vt is the (time-dependent) generator of g̃t and σk(t) = (g̃−1
t )∗(σ̂k(t)). Notice that this is

now an equation on the moving complex manifold (P(E), Jt). The point here is that while gt and
therefore g̃t fails to converge at infinity, destroying convergence of HYM flow, nevertheless the
Yang-Mills flow itself converges (see Theorem 3.5 below), so the function σk(t) will also converge,
and there is hope of defining a parabolic norm such that this quantity is finite in the norm (and
bounded in k).

However, here we encounter another issue, which is that (again unless the holomorphic structure
defined by A0 is polystable) the Yang-Mills flow does not converge exponentially, so we cannot
use the analysis of [HP] as is. On the other hand, in [R], Råde, has shown that on a Riemann
surface, for a general initial condition A0 (inducing some arbitrary holomorphic bundle E0) the flow
converges at a rate of 1/

√
t (again see Theorem 3.5). Then the first technical challenge is to find

an appropriate weight function for the norm, so that ‖σk(t)‖ is bounded, and at the same time the
Lax-Milgram argument used to establish the linear parabolic existence and regularity theorems on
compact manifolds in [HP] goes through.

Once this has been established, in a similar fashion to the elliptic versions of the problem, we may
perturb the metrics ωk(h, Jt) by adding paths of Kähler potentials to eliminate the higher order
terms in equation 1.9. Writing out the effect of this on the scalar curvature, one sees that these
potentials must satisfy various linear parabolic equations. By the argument described in the previous
paragraph, we may find long-time solutions to these equations with estimates in the parabolic norm.
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This means that we obtain metrics ωk,l(t) solving the analogue of equation 1.9 where the right hand
side instead has a factor of k−l for l arbitrary, and moreover where the parabolic norm ‖σk,l(t)‖
of the function it multiplies, is still bounded. Furthermore, using the convergence of Yang-Mills
flow, and the linear parabolic theory, the metrics ωk,l(t) will converge at infinity to Kahler metrics
ωk,l,∞.

The elliptic operators that appear in the parabolic equations we obtain are time dependent in
some cases. In particular we obtain an equation involving the Laplacian on sections of E, depending
on the connections At along the Yang-Mills flow. In order to apply the parabolic theory, we require
that the right hand sides of our equations be orthogonal to the kernels of these operators, and also
to those of their limits at infinity. For this we require two geometric hypotheses on the bundle.
The former property is assured by the assumption of simplicity of the holomorphic bundle . The
latter can be guaranteed if we know that the limit of the Yang-Mills flow at infinity is a Yang-
Mills connection giving rise to a bundle that splits as a direct sum of stable bundles, all of which
have different slope. By Theorem 3.5 below, this will happen precisely when another, fairly natural
hypothesis on the initial holomorphic bundle E = E0 is put in place, namely that its Harder-
Narasimhan filtration is equal to any of its Harder-Narasimhan-Seshadri double filtrations; or in
other words, the direct summands that appear in the associated graded object Gr(E0) of the Harder-
Narasimhan filtration are already stable. Notice that by the result of Theorem 3.5, as well as our
assumption on E0, the metrics ωk,l,∞ live on the manifold

(P(E), J∞) = P(E∞) = P(Gr(E0)),

appearing in the limit, which is precisely an instance of the manifolds considered in [B].
The simplest example of a bundle satisfying our hypotheses is a rank two bundle given as a

non-split extension
0→ L1 → E → L2 → 0

of two line bundles with degL1 = 1 and degL2 = 0, and g(Σ) = 3. The bundle E can be shown to
be simple (see Example 3.7 for details). Morover, the Harder-Narasimhan of this bundle is precisely
the inclusion L1 ↪→ E , and the associated graded object is

Gr(E) = L1 ⊕ L2.

The summands are stable (since they are line bundles), and by assumption have different slopes.
Note there are no previous results in the literature proving long-time existence of Calabi flow even
in this very simple case.

Once the approximate solution has been found, then the idea is to use the implicit function
theorem to find an exact solution, as described above, just as in the elliptic versions of the problem.
Here again, we encounter difficulties. First of all, one needs to construct a map between two different
Banach spaces, the zeros of which will give a solution to Calabi flow. The natural impulse is to try
to define such a map using the operators Ft given by the right hand side of Equation 1.9 (except
using the metrics ωk,l,(t)), between two parabolic Sobolev spaces, imitating the elliptic problem.
Here, we think of this as defining a map on functions by adding potentials to the metric inside all
the operators involved. One needs to reprove the existence of such a map in the time dependent
setting, since the result does not follow immediately from the static case, where the spaces are
ordinary Sobolev spaces.

A further issue is that the operators Ft do not converge to zero, but rather to an operator F∞,
which by construction is the extremal metric operator (see equation 2.6) employed by Brönnle
in [B], which we think of as a map between two ordinary Sobolev spaces. Therefore, in order to
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obtain a well-defined map at all, it must actually be given as the difference

Dt = Ft − F∞.

Note that the Ft satisfy the property that their pullback by the diffeomorphisms g̃t is precisely the
left hand side of Calabi flow. Notice also that Dt, rather than being a map on a single Banach
space is now a map on a product of two spaces. Then the inverse function theorem will provide a
perturbation giving a solution to the equation

Ft (φt) = F∞ (φ∞) .

Since the equation Ft (φt) = 0 is equivalent to a solution to Calabi flow, we should simultaneously
solve F∞ (φ∞) = 0. Therefore our next guess at a map that will acheive the desired result, is one
of the form

Ct : W1 × V1 →W2 × V2

where W1 and W2 are the parabolic spaces, and V1 and V2 ordinary Sobolev spaces, and

Ct = (Dt, F∞).

We may follow the argument of [B] to produce a solution to the second equation, and the hope
would be to employ a time-dependent version of the perturbation given there to solve the first.
A subtlety of this strategy, is that finding an extremal metric is tantamount to finding a a pair
(φ∞, V∞) where φ∞ is a smooth function (initially in some Sobolev space) and V∞ is a Hamiltonian
Killing vector field, such that the scalar curvature of the metric obtained by adding the potential φ∞
is a Hamiltonian function for V∞ (see Equation 2.6 below). In other words, one has the additional
freedom of perturbing V∞. This is what is done in [B]. In order to make the inverse function theorem
argument work, one needs surjectivity of the linearisation of the map F∞, which is essentially the
Lichnerowicz operator. This will not be true for F∞ itself, which involves the Hamiltonian function
for a certain Hamiltonian Killing vector field arising naturally in [B], but will if we replace this
function with a certain perturbation F̃∞ obtained as the Hamiltonian function of a close-by vector
field Ṽ∞. The point here is the the kernel of the operator in question is exactly the space of
Hamiltonian Killing fields. By the simplicity assumption on our bundle E0, there are no non-trivial
holomorphic vector fields on P(E0), and therefore there are also none on P(Et) for any t (the Yang-
Mills flow preserves the complex gauge orbit). However, the limit P(E∞) does indeed possess such
vector fields, and it is our assumption on the Harder-Narasimhan filtration of E0 that allows us to
characterise these precisely enough to eliminate the kernel.

The problem with this from the point of view of the time dependent part of the map Ct, is that
now the operator Ft− F̃∞ is not well defined as a map into the parabolic Sobolev space (W2 in the
schematic above), because it is F∞ and not F̃∞ to which Ft converges. We therefore have to find
a perturbation F̃t for which this holds. However the naive choice (obtained by modifying Ft in a
similar way by perturbing the vector field slightly) will result in an operator a zero of which does
not produce a solution to Calabi flow on any time interval. This is because it is solutions of the
equation

∂ωt
∂t

+ i∂Jt∂JtScal(ωt) + LVt (ωt) = 0

which pull back to solutions of Calabi flow under g̃t, and modifying the vector field Vt destroys this
effect.

Our solution is to introduce a cut-off function, so that we obtain a path of operators converging
to F̃∞, but (the pullback of which) gives a solution to Calabi flow up to some large time S. We
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therefore obtain an entire one-parameter family of operators FSt as above, and so if we can make
the correct perturbation for every S, we will obtain a longtime solution to Calabi flow.

To summarise, our main theorem is the following.

Theorem 1.3. Let E → Σ be a simple holomorphic vector bundle over a compact Riemann surface,
and assume furthermore that the associated graded object of the Harder-Narasimhan-Filtration only
contains stable factors. Let ωΣ be a constant scalar curvature metric on Σ, h an hermitian metric on
the underlying smooth vector bundle E, and J the holomorphic structure on the projectivisation P(E)
induced by E. For k >> 0 let ωk(h, J) be the Kähler metric on P(E) defined by iF(OP(E)(1),h) +kωΣ in
the adiabatic Kähler class 2πc1(V) + k[ωΣ], where OP(E)(1) is the hyperplane bundle, (OP(E)(1), h)
is the Chern connection induced by h, and V is the vertical tangent bundle of P(E). Then the Calabi
flow on P(E) starting at the metric ωk(h, J) exists for all time.

1.5. Outline of the paper. In Section 2 we give some background on cscK and extremal metrics
as well as Calabi flow. We define the Calabi map between certain parabolic Sobolev spaces, to be
used in Sections 5 and 6 below, and show that it is well-defined and smooth. In Section 3 we discuss
Yang-Mills theory on a smooth, hermitian bundle over a Riemann surface, and in particular the
HYM and Yang-Mills flows, and give the critical convergence theorems of Råde and Daskalapoulos.
In the process we discuss the Harder-Narasimhan filtration, and describe the geometric conditions
we will put on our initial holomorphic bundle E0. We give some simple examples of bundles over
a Riemann surface such that satisfy the condition of our main theorem. In Section 4 we consider
the manifolds of interest in this paper, namely the projectivisation P(E0) and the manifolds P(Et)
determined by Yang-Mills flow, as well as the limit of these manifolds at infinty P(E∞) = P(Gr(E0)).
We construct the Kähler metrics ωk(ht, J), ωk(h, Jt), and ωk(h, J∞) on these manifolds alluded to
above, and collect various facts regarding the geometry of this setting, to be used in the sequel.

The heart of the proof is contained in Sections 5 and 6. In Section 5 we construct the approximate
metrics ωk,l(t) (see Theorem 5.1 below). We begin by showing that the metrics ωk(ht, J), ωk(h, Jt)
actually give formal approximations to Calabi flow up to order 2. We then verify that, for ωk(h, Jt)
this approximation persists in the parabolic Sobolev norm. The meat of Section 5 is to pass from
ωk(h, Jt) to the metrics ωk,2(t) (and their pullbacks ω̂k,2(t) under g̃t) by adding certain Kähler
potentials to the metric. Here we must pass back and forth between moving metric and moving
holomorphic structure pictures, as certain calculations are more easily performed in one or the
other framework. We construct the various linear parabolic equations that must be solved, and find
solutions with parabolic estimates with the aid of Proposition 7.10, to obtain a formal solution up
to order k−3. Finally we apply Proposition as well as the linear parabolic estimates, to prove that
the this estimate can again be validated in the norm of the parabolic space. In the last subsection
of section 5, we show how to perform the inductive argument to obtain this estimate for all orders.

In Section 6, we make the above schematic for our map between two (products of) Banach spaces
rigourous, applying Proposition 2.7, gradually building up the correct map following the discussion
above. We then consider the linearisation of this map, and prove its surjectivity. We prove a certain
estimate on the operator norm of its inverse in the parabolic Sobolev space. Here we are helped by
results in the elliptic case from cite [F], and [B]. We finally estimate the non-linear part of our map,
giving us all the tools to apply the implicit function theorem, and therefore a longtime solution in
the parabolic space, carrying out the sketch given previously. Since we may take the regularity to
be as high as we like, we actually obtain a C∞ solution to the flow for all time.

In the Section 7, the appendix, we give our version of the linear parabolic theory, proving the
main existence, regularity and convergence results that we need.
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1.6. Outlook. Clearly the restrictions we have place on both the bundle E and on the dimension
of the base Σ, are unsatisfactory. We suspect that the hypotheses on E are an artifact of the
proof, and with more work, it should be possible to remove these. It should also be within reach
to prove the convergence of the Chen-Sun flow 1.4 to the extremal holomorphic structure in the
case considered in the present article. Moreover, given what we have done here, it should be a
straightforward problem to prove long-time existence and convergence to the cscK metric when
the base manifold (X,ωX) and the bundle E0 satisfy the conditions of Hong’s theorem in [H], even
when X has arbitrary dimension. This is because when E0 is stable the HYM flow actually converges
exponentially, so we avoid most of the difficult technical problems addressed above.

A more difficult problem is to study the case of higher dimensional base manifold when E is not
stable, even if the base has a constant scalar curvature metric. There are two major issues here.
First of all, there appears to be no analogue of the result of Råde about the rate of convergence
of the Yang-Mills flow, even when the flow converges smoothly. Even more seriously, although the
higher dimensonal version of the result of [D] has already been proven (see [DW1], [S]), the Yang-
Mills flow can develop singularities along holomorphic subvarieties in infinite time (see [HT]). On
the other hand, by [SW] (for surfaces see also [DW2]), this singular set is precisely the singular
set of associated graded sheaf Gr(E0) of the Harder-Narasimhan-Seshadri double filtration. Note
that in higher dimensions this filtration is given by subsheaves rather subbundles, and therefore its
graded object is singular in general.

With all of this is mind we can give a slightly more precise version of Donaldson and Chen’s
conjectures 1.2 and 1.1 for ruled manifolds.

Conjecture 1.4. Let (E, h) → (X,ωX) be an Hermitan vector bundle over a Kähler manifold
with constant scalar curvature, and let A0 be an integrable, unitary connection determining a holo-
morphic bundle E0. Consider the adiabatic metrics ωk(h, J) = FOP(E)(1) + ikπ∗ωX on P(E0). Then
for sufficiently large k the Calabi flow starting from these metrics exists for all time and one of
four things occurs:

• A cscK metric on P(E0) exists in [ωk(h, J)] and Calabi flow converges to the cscK metric.
• An extremal metric exists on the manifold P(E0) in [ωk(h, J)] and the flow 1.4 converges
to the extremal holomorphic structure, which is isomorphic to P(E0). This happens exactly
when E0 splits as a direct sum of stable bundles.
• No extremal metric on P(E0) in [ωk(h, J)] exists, but an extremal metric exists on P(Gr(E0)),
which is a complex manifold, the Yang-Mills flow on E converges smoothly without bubbling,
and the Chen Sun flow 1.4 converges to the extremal holomorphic structure, which is pre-
cisely that of the P(Gr(E0)). This happens exactly when the Harder-Narasimhan-Seshadri
double filtration E0 consists of smooth subbundles.
• No smooth extremal metric exists even on P(Gr(E0)), which is singular, but some sort
of singular extremal metric does exist on this space. The Yang-Mills flow converges with
singularities along the holomorphic subvariety of X, determined by the sheaf Gr(E0). The
Chen-Sun flow 1.4 converges smoothly outside of the singular set Sing(P(Gr(E0)) to the
singular holomorphic structure determined by this space, and this structure determines the
singular extremal metric.

As we have discussed, the first case appears to be relatively straightforward. In the present paper
we have made progress towards this problem in the third case when the base is a Riemann surface,
and a complete proof in this case ought to be in reach. In higher dimensions, this problem could be
approachable using a similar strategy to the one employed in this article, if the requisite analogue
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of the result of Råde [R] could be obtained. The same is true of the second case listed above, which
is an easier version of the same problem. The last case is that of a general unstable bundle in higher
dimensions, and appears to require a completely different approach. Here even the extremal metric
problem seems not to be properly understood, but to understand what sort of structure should
appear in the limit, one might attempt to prove some sort of singular version of the theorem in [B],
starting from a direct sum of the singular HYM connections constructed in [BS].

Acknowledgments. The author gives his profuse thanks to Joel Fine, who was originally a co-
author on this paper, who suggested to him that longtime existence for the Calabi flow on projective
bundles could be approached via an adiabatic limit method, and from whose expertise he has
benefitted over a number of years through discussions about this project. The author also thanks
him for his comments on an earlier draft of the present manuscript. Throughout work on this
project, the author was supported by a "DyGeSt" grant as well as an FNRS "Chargé de recherches"
fellowship while at the Université Libre de Bruxelles. He was funded by the Simons Center for
Geometry and Physics while at Stony Brook.

2. Canonical metrics, the Calabi flow, and operators on parabolic spaces

Our discussion in this subsection is entirely general. Throughout, we fix a Kähler manifold
(X,ω, g). We will write J for the almost complex structure associated to the complex structure on
X.

2.1. Extremal and cscK metrics. We define the space of Kähler potentials in the Kähler class
[ω]

Hω = {φ ∈ C∞(Σ)|ω + i∂J∂Jφ > 0},
and will write ωφ = ω + i∂J∂Jφ for φ ∈ Hω.

The Ricci curvature of an hermitian metric g on X , is defined to be

ρ = tr (F (g)) ,

where F (g) is the Riemannian curvature of the metric g. Recall that g may be thought of as an
element of Γ(T ∗X ⊗ T ∗X). A basic lemma in Kähler geometry is that he Ricci form ρ is equal to
iFK∗X (g), i times the curvature of the induced metric on the anti-canonical bundle K∗X , which is an
element of Γ(KX ⊗KX), and that the latter is fact given by ωn

n! ∈ Γ(KX ⊗KX), so that in local
coordinates one may write:

(2.1) ρ(ω) = i∂J∂J log ω
n

n! ,

so that ρ is in fact a closed, real (1, 1) form.
The scalar curvature is by definition

(2.2) Scal (ω) = Λωρ (ω) .

Here Λω is contraction with the Kähler metric. In local coordinates, for a (1, 1)-form α = αi,jdz
i ∧

dzj ,
Λωα = gijαi,j .

A metric is called constant scalar curvature Kähler or cscK, if the scalar curvature is a constant
function. We will write

Scalω : Hω → C∞(X)

φ 7→ Scal
(
ω + i∂J∂Jφ

)
,
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ωφ ∈ [ω] is cscK if and only if
Scalω (φ) = c,

for some constant c.
The most natural functional on Hω to consider is the Calabi functional

C : Hω → R

φ 7→
�
X

(Scal (ωφ))2 dvolω.

A metric is called extremal if it is a critical point of this functional. Note that the average scalar
curvature is a topological constant:

Scal (ω) = 1
vol(ω)

�
X
Scal (ω) dvolω = 2πnc1(X) ∪ [ω]n−1

[ω]n .

Then since�
X

(Scal (ω))2 dvolω =
�
X

(
Scal (ω)− Scal (ω)

)2
dvolω +

�
X

(
Scal (ω)

)2
dvolω,

cscK metrics are also the minimizers of the functional given by the first term on the right hand .
The Euler-Lagrange equations of C are given by the equation

(2.3) D(ω,J)Scal(ω) = 0,

where
D(ω,J) : C∞(X,C)→ Γ(Λ0,1X ⊗ T 1,0X)

is the Lichnerowicz operator defined by

D(ω,J) = ∂J(∇1,0
g φ),

where ∇1,0
g φ = 1

2(∇gφ− iJ∇gφ) ∈ T 1,0X, or in local coordinates

∇1,0
g φ = gij∂jφ,

is the (1, 0) part of the of ∇gφ. In other words, a metric is extremal if and only if the (1, 0) part of
the gradient is a holomorphic vector field.

We define the Lie algebra

h =
{
V ∈ H0

(
T 1,0X

)
|V = ∇1,0

g φ for some φ ∈ C∞(X,C)
}
.

We define the space of holomorphy potentials

H = kerD(ω,J).

Note φ is determined by ∇1,0
g φ up to a constant, so dimH = dim h + 1. The operator D∗(ω,J)D(ω,J)

is self adjoint, so

(2.4) kerD∗(ω,J)D(ω,J) = H.

The following is a standard result (see for example [LS]).

Lemma 2.1. The following two statements hold.
(i) A vector field W ∈ Γ

(
T 1,0X

)
is holomorphic with zeros if and only if W ∈ h, that is if

and only if there exists φ ∈ C∞ (X,C) such that D∗(ω,J)D(ω,J)φ = 0, and

∂Jφ = −1
2ω (W,−) .
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(ii) A vector field V ∈ Γ(TX) is a Killing field (LV (g) = 0) with zeros if and only if there
exists a function φ ∈ C∞ (X,R) such that D∗(ω,J)D(ω,J)φ = 0 and

dφ = −ω (V,−) .

This implies more precisely that V = J∇gφ.
In particular, if ReW is a killing field we may choose the function φ in (i) above to be real, and

the vector field V − iJV ∈ Γ
(
T 1,0X

)
,where V is as in (ii) above, is holomorphic.

Notice that the previous lemma implies that a vector field is a real Killing field with zeros if
and only if it is real holomorphic and a Hamiltonian vector field. We therefore make the following
definition.

Definition 2.2. A vector field V ∈ Γ(TX) as in (ii) of the preceeding lemma will be called a
Hamiltonian Killing field. We will write ham(J, g, ω) for the space of such vector fields.

Remark 2.3. If we write φ = φ1 + iφ2 for φ ∈ C∞ (X,C) , then under the isomorphism of real
vector bundles T 1,0X ∼= TX,

∇1,0
g φ 7→ 1

2 (∇gφ1 + J∇gφ2) .

Therefore if W ∈ h and W = ∇1,0
g φ for φ imaginary, then ReW ∈ ham(J, g, ω), and conversely,

so that ham(J, g, ω) is precisely the image under the above isomorphism of elements of h with
imaginary holonomy potential. We will denote this set by k ⊂ h.

We may restate the extremal metric condition 2.3 on the Kähler metric ω as Scal(ω) ∈ H. If ω
is not extremal, we may try to find a Kähler potential φ such that ω + i∂J∂Jφ is extremal, or in
other words such that

Scalω (φ) = Scal(ω + i∂J∂Jφ) ∈ H.

By the previous lemma, in order for the Kähler class [ω] to admit extremal Kähler metrics, there
must be some non-trivial Hamiltonian Killing field V ∈ ham(J, g, ω) on X, and we must have
V = J∇g(ω) (HV (ω)), so that HV (ω) is a Hamiltonian function for V with respect to ω. We may
define a function

Hω,V : Hω → C∞(X)
φ 7→ HV (ω + i∂J∂Jφ),

where HV (ω+ i∂J∂Jφ) is a Hamiltonian function for V with respect to ω+ i∂J∂Jφ. The following
is Lemma 20 of Brönnle and computes the function HV (ω + i∂J∂Jφ).

Lemma 2.4. If V ∈ ham(J, g, ω) and if φ ∈ C∞(X) is V -invariant, that is, LV φ = 0, then we
have

HV (ω + i∂J∂Jφ) = HV (ω)− 1
2∇g(ω) (HV (ω)) · ∇g(ω)φ.

If we fix the the vector field V , we may now we may define the extremal operator with respect
to V :

FV : Hω → C∞(X)
φ 7→ Scal(ω + i∂J∂Jφ)−HV (ω + i∂J∂Jφ).

In other words
FV = Scalω +Hω,V .
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By Lemma 2.4, if we write Hω,V ⊂ Hω for the subset of V -invariant Kähler potentials, we may
write

FV : Hω,V → C∞(X)

φ 7→ Scal(ω + i∂J∂Jφ)−HV (ω) + 1
2∇g(ω)HV (ω) · ∇g(ω)φ

= Scal(ω + i∂J∂Jφ)−HV (ω) + 1
2L∇g(ω)HV (ω)(φ)(2.5)

Clearly then the extremal metric condition can be restated as

(2.6) FV (φ) = 0,

since this says precisely that Scal(ω + i∂J∂Jφ) is a Hamiltonian function for V with respect to
ω + i∂J∂Jφ, and therefore lies in H. Since the choice of V was arbitrary, we may more generally
consider the map

F : ham(J, g, ω)×Hω → C∞(X)
(V, φ) 7→ Scal(ω + i∂J∂Jφ)−HV (ω + i∂J∂Jφ).

2.2. Linearisations. We will now give the linearisations of the scalar curvature and extremal
metric operators. Recall that the Lichnerowicz operator satisfies the following formula:

(2.7) D∗(ω,J)D(ω,J)φ =∆2
ω (φ) + gω (∇Scal (ω) ,∇φ) + n (n− 1) i∂J∂J (φ) ∧ ρω ∧ ωn−2

ωn
.

We will write d0 (Scal)ω for the derivative at 0 (the linearisation) of the map Scalω. A formula
for the linearisation of the scalar curvature is given by the following lemma, which is Lemma 2.1
of [F].

Lemma 2.5. Let (X,ω) be a Kähler manifold of dimension n. Let V ⊂ L2
d+4 be the L2

d+4 completion
of an open set Hω ⊂ C∞(X). The map

Scalω : V → L2
d

defined by φ→ Scal(ωφ) is smooth as a map of Banach spaces when d > n− 2..

d0 (Scal)ω = D∗(ω,J)D(ω,J)φ+gω (∇Scal (ω) ,∇φ)

= ∆2
ω (φ)− Scalω (0) ∆ω (φ) + n (n− 1) i∂J∂J (φ) ∧ ρω ∧ ωn−2

ωn
,

so that in particular if ω has constant scalar curvature, then

dωScal (φ) = D∗(ω,J)D(ω,J)φ,

and if ω is Kähler-Einstein with Einstein constant λ, then

d0 (Scal)ω = ∆2
ω (φ)− λ∆ω (φ) .

Lemma 2.6. If we fix V ∈ ham(J, g, ω), the linearisation of the map FV at 0 is given by

(dFV )0 : Hω,V → C∞(X)

φ 7→ D∗(ω,J)D(ω,J)φ−
1
2gω (∇Scal (ω) ,∇φ) + 1

2∇g(ω)HV (ω) · ∇g(ω)φ

= D∗(ω,J)D(ω,J)φ−
1
2L∇Scal(ω)(φ) + 1

2L∇g(ω)HV (ω)(φ).

This follows automatically from Lemmas 2.5 and 2.4.
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2.3. Calabi flow. Let X be a complex manifold with holomorphic structure J . Fix a Kahler form
ω which is compatible with J determining a Kähler triple (J, ω, gω) on X.

There is a functional
M : Hω → R,

called the Mabuchi energy, the norm square of whose gradient is�
X

(
Scal(ωφ)− Scal(ωφ)

)2
dvolω.

In other words, it is the anti-derivative of the closed one-form

(dM)φ (ψ) =
�
X

(Scal(ωφ)− Scal(ωφ))dvolω.

Note, that there is normally a minus sign in the above formula, but we have defined the space Hω
using the operator ∂J∂J rather than ∂J∂J , as is customary, so our Hω is minus the usual space of
Kähler potentials. The negative gradient flow of this functional is the equation

(2.8) ∂φt
∂t

= −(Scal(ωφt)− Scal(ωφt)),

and writing ωt = ω + i∂J∂Jφt we see that this equation is equivalent to equation 1.6, so we may
also refer to it as Calabi flow.

In this paper we will have occasion to consider the action of the diffeomorphism group diff(X),
on the set of complex structures JX on X given by ξ ·J = dξ◦J ◦(dξ)−1. In terms of ∂̄ operators the
action is given by ∂̄J ◦ξ∗ = ξ∗◦ ∂̄ξ·J . Since ξ∗◦dX = dX ◦ξ∗ we also have ∂J ◦ξ∗ = ξ∗◦∂ξ·J . It is clear
that triple (φ−1 ·J, φ∗ω, φ∗gω) is a Kähler triple, and by construction, the map φ : (X,J)→ (X,φ·J)
is holomorphic.

If ωt is a path of Kahler forms on the moving complex manifold (X, Jt), then given a one-
parameter family of diffeomorphisms ξt, ξ∗t (ω(t)) is a path of Kähler forms on the fixed complex
manifold (X, J).

Notice that

Ric(ξ∗t (ω(t))) = ξ∗t (Ricω(t)) ,

and so
Scal (ξ∗t (ω(t))) = ξ∗t Λω(t) (Ricω(t)) = ξ∗t Scal (ω(t)) ,

and we therefore obtain

i∂̄J∂J (Scal (ξ∗t (ω(t)))) = ξ∗t (i∂Jt∂JtScal (ω(t)))

Secondly a standard fact is that
∂ξ∗t (ω(t))

∂t
= ξ∗t

(
∂ω(t)
∂t

+ LVtω(t)
)
,

where Vt is the (time-dependent) flow of the diffeomorphisms ξt.
Throughout the paper we will consider the equation:

(2.9) ∂ω(t)
∂t

+ i∂̄Jt∂JtScal (ω(t)) + LVtω(t) = 0

on the moving complex manifold (X, Jt). We will call this equation Calabi flow up to diffeo-
morphisms, because using the above facts one sees that a solution to this equation is a equivalent
to the fact that ξ∗t (ω(t)) solves Calabi flow 1.6 on (X, J).
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2.4. The Calabi operator and its linearisation. Recall the parabolic Sobolev spacesW 0
4,p+1,wε(t)

and W4,p,q,wε(t) from Section 7. The parabolic analogue of Lemma 2.5 is the following.

Lemma 2.7. Let X be a compact manifold and (Jt, gt, ωt) a family of Kähler structures on X,
converging smoothly to a Kähler structure (J∞, g∞, ω∞) on X, such that

‖Jt − J∞‖W4,p+1,q,wε(t)(g∞) , ‖ωt − ω∞‖W4,p+1,q,wε(t)(g∞) <∞,

and
‖Scal(ωt)− Scal(ω∞)‖W4,p,q−1,wε(t)(g∞) <∞.

Then writing Scalωt(φt + φ∞) = Scal(ωt + i∂Jt∂Jt(φt + φ∞)) and Scalω∞(φ∞) = Scal(ω∞ +
i∂J∞∂J∞φ∞), there is a well-defined, differentiable map

∂

∂t
+ Scalωt − Scalω∞ : W 0

4,p+1,q,wε(s)(g∞)× L2
4(p+1)(g∞)→W4,p,q−1,wε(s)(g∞)

(φt, φ∞) 7→ ∂φt
∂t

+ Scalωt(φt + φ∞)− Scalω∞(φ∞),

whenever q < p− (n− 2)/4. Moreover, the derivative of this map at 0 is given by

(φt, φ∞) 7→ ∂φt
∂t

+ D∗ωtDωt (φt + φ∞)−D∗ω∞Dω∞ (φ∞)

−1
2 (gt (∇gtScal(ωt),∇gt(φt + φ∞))− g∞ (∇g∞Scal(ω∞),∇g∞φ∞)) .

Proof. First of all, if φt ∈W 0
4,p+1,q,wε(s)(g∞), then clearly∥∥∥∥∂φt∂t

∥∥∥∥
W4,p,q−1,wε(t)(g∞)

=
q−1∑
j=0

� ∞
0
|wε(t)|2

∥∥∥∥∥∂j∂t ∂φt∂t
∥∥∥∥∥
L2

4(p−j)(g∞)
=

q∑
i=1

� ∞
0
|wε(t)|2

∥∥∥∥∥∂i∂tφt
∥∥∥∥∥

2

L2
4(p+1−i)(g∞)

≤
∥∥∥∥∂φt∂t

∥∥∥∥
W4,p+1,q,wε(t)(g∞)

<∞,

so ∂tφt ∈W4,p,q−1,wε(s)(g∞).
It remains to show

Scalωt(φt + φ∞)− Scalω∞(φ∞) ∈W4,p,q,wε(t)(g∞).

If ρωt+i∂Jt∂Jt (φt+φ∞) and ρω∞+i∂J∞∂J∞φ∞
are the Ricci curvatures of ωt + i∂Jt∂Jt(φt + φ∞) and

ω∞ + i∂J∞∂J∞φ∞ respectively, we may write(
ρωt+i∂Jt∂Jt (φt+φ∞) − ρω∞+i∂J∞∂J∞φ∞

)
∧
(
ωt + i∂Jt∂Jt(φt + φ∞)

)n−1

+ρω∞+i∂J∞∂J∞φ∞
∧
((
ωt + i∂Jt∂Jt(φt + φ∞)

)n−1
−
(
ω∞ + i∂J∞∂J∞φ∞

)n−1
)

= ρωt+i∂Jt∂Jt (φt+φ∞) ∧
(
ωt + i∂Jt∂Jt(φt + φ∞)

)n−1
− ρω∞+i∂J∞∂J∞φ∞

∧
(
ω∞ + i∂J∞∂J∞φ∞

)n−1

= Scalωt(φt + φ∞) ∧
(
ωt + i∂Jt∂Jt(φt + φ∞)

)n
− Scalωt(φ∞)

(
ω∞ + i∂J∞∂J∞φ∞

)n
= (Scalωt(φt + φ∞)− Scalωt(φ∞))

((
ωt + i∂Jt∂Jt(φt + φ∞)

))n
+Scalωt(φ∞)

((
ωt + i∂Jt∂Jt(φt + φ∞)

)n
−
(
ω∞ + i∂J∞∂J∞φ∞

)n)
,
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so that for each j we have

∂jt ((Scalωt(φt + φ∞)− Scalωt(φ∞)))

= ∂jt


(
ρωt+i∂Jt∂Jt (φt+φ∞) − ρω∞+i∂J∞∂J∞φ∞

)
∧
(
ωt + i∂Jt∂Jt(φt + φ∞)

)n−1

((
ωt + i∂Jt∂Jt(φt + φ∞)

))n


+∂jt

ρω∞+i∂J∞∂J∞φ∞
∧
((
ωt + i∂Jt∂Jt(φt + φ∞)

)n−1
−
(
ω∞ + i∂J∞∂J∞φ∞

)n−1
)

((
ωt + i∂Jt∂Jt(φt + φ∞)

))n


−∂jt

Scalωt(φ∞)
((
ωt + i∂Jt∂Jt(φt + φ∞)

)n
−
(
ω∞ + i∂J∞∂J∞φ∞

)n)((
ωt + i∂Jt∂Jt(φt + φ∞)

))n
 .

Notice that this calculation makes sense, because by construction for each j in the stated range

∂jt

(
i∂Jt∂Jt(φt + φ∞)

)
,

is continuous so the products in the above formulae involving this quantity are meaningful. We
therefore have:

‖Scalωt(φt + φ∞)− Scalω∞(φ∞)‖W4,p,q−1,wε(s)(g∞)

=
q−1∑
j=0

� ∞
0
|wε(t)|2

∥∥∥∥∥∂j∂tScalωt(φt + φ∞)− Scalω∞(φ∞)
∥∥∥∥∥
L2

4(p−j)(g∞)

≤ C
q−1∑
j=0

� ∞
0
|wε(t)|2

∥∥∥∥∥∥∥∂jt

(
ρωt+i∂Jt∂Jt (φt+φ∞) − ρω∞+i∂J∞∂J∞φ∞

)
∧
(
ωt + i∂Jt∂Jt(φt + φ∞)

)n−1

(
ωt + i∂Jt∂Jt(φt + φ∞)

)n

∥∥∥∥∥∥∥
L2

4(p−j)(g∞)

+C
q−1∑
j=0

� ∞
0
|wε(t)|2

∥∥∥∥∥∥∥∥∂
j
t

ρω∞+i∂J∞∂J∞φ∞
∧
((
ωt + i∂Jt∂Jt(φt + φ∞)

)n−1
−
(
ω∞ + i∂J∞∂J∞φ∞

)n−1
)

(
ωt + i∂Jt∂Jt(φt + φ∞)

)n

∥∥∥∥∥∥∥∥
L2

4(p−j)(g∞)

+C
q−1∑
j=0

� ∞
0
|wε(t)|2

∥∥∥∥∥∥∂jt
Scalω∞(φ∞)

((
ωt + i∂Jt∂Jt(φt + φ∞)

)n
−
(
ω∞ + i∂J∞∂J∞φ∞

)n)(
ωt + i∂Jt∂Jt(φt + φ∞)

)n
∥∥∥∥∥∥

L2
4(p−j)(g∞)

≤ C1 + C2

q−1∑
j=0

� ∞
0
|wε(t)|2

∥∥∥∂jt (ρωt+i∂Jt∂Jt (φt+φ∞) − ρω∞+i∂J∞∂J∞φ∞

)∥∥∥
L2

4(p−j)(g∞)
,

where we have used the assumption

‖ωt − ω∞‖W4,p+1,q,wε(s)(g∞) , ‖φt‖W4,p+1,q,wε(s)(g∞) , ‖Jt − J∞‖W4,p+1,q,wε(s)(g∞) <∞.

More specifically, since if we write

∂Jt = ∂J∞ + a1,0
t , ∂Jt = ∂J∞ + a0,1

t

where a1,0
t ∈ Ω1,0(End (C)), a0,1

t ∈ Ω0,1(End (C)), with a1,0
t , a0,1

t ∈W4,p+1,q,wε(s)(g∞), then((
ωt + i∂Jt∂Jt(φt + φ∞)

)n
−
(
ω∞ + i∂J∞∂J∞φ∞

)n)
= ((ωt − ω∞))

((
ωt + i∂Jt∂Jt(φt + φ∞)

)n−1
+ · · ·+

(
ω∞ + i∂J∞∂J∞φ∞

)n−1
)
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+
(
ia0,1
t ◦ ∂J∞(φt + φ∞)

)((
ωt + i∂Jt∂Jt(φt + φ∞)

)n−1
+ · · ·+

(
ω∞ + i∂J∞∂J∞φ∞

)n−1
)

+
((
∂J∞ ◦ a

1,0
t + ia1,0

t ∧ a
0,1
t

)
(φt + φ∞)

)((
ωt + i∂Jt∂Jt(φt + φ∞)

)n−1
+ · · ·+

(
ω∞ + i∂J∞∂J∞φ∞

)n−1
)

+
(
i∂J∞∂J∞φt

)((
ωt + i∂Jt∂Jt(φt + φ∞)

)n−1
+ · · ·+

(
ω∞ + i∂J∞∂J∞φ∞

)n−1
)
.

This says in particular that for each j,∥∥∥∂jt (((ωt + i∂Jt∂Jt(φt + φ∞)
))n)∥∥∥

L2
4(p−j)(g∞)

is uniformly bounded in time. Note also that dividing by the Kähler form is the same thing is
taking the inner product, so we may also apply the Sobolev multiplication theorem

‖T1 · T2‖L2
4(p−j)(g∞) ≤ ‖T1‖L2

4(p−j)(g∞) ‖T2‖L2
4(p−j)(g∞) ,

for two tensors T1 and T2, and · is any algebraic operation defined using tensor product and
contraction. This has also been used in the estimate above. The same calculation applies to((

ωt + i∂Jt∂Jt(φt + φ∞)
)n−1

−
(
ω∞ + i∂J∞∂J∞φ∞

)n−1
)
,

and all other quantities involved in the integrals above involving these differences are bounded in
the appropriate norms, these two integrals are finite. It remains to prove finiteness of the final
integral. We may write

ρωt+i∂Jt∂Jt (φt+φ∞) = ρωt + i∂Jt∂Jt log


(
ωt + i∂Jt∂Jt(φt + φ∞)

)n
ωnt


= ρωt + i∂Jt∂Jt log

1 +
n∑
i=1

(ωt)n−i ∧
(
i∂Jt∂Jt(φt + φ∞)

)i
ωnt

 ,
and similarly

ρω∞+i∂J∞∂J∞φ∞
= ρω∞ + i∂J∞∂J∞ log

1 +
n∑
i=1

(ω∞)n−i ∧
(
i∂J∞∂J∞(φ∞)

)i
ωn∞


and so obtain:

ρωt+i∂Jt∂Jt (φt+φ∞) − ρω∞+i∂J∞∂J∞φ∞
= ρωt − ρω∞

+i∂J∞∂J∞

log


(
ωt + i∂Jt∂Jt(φt + φ∞)

)n
ωnt

− log


(
ω∞ + i∂J∞∂J∞(φ∞)

)n
ωn∞


+ia0,1

t ◦ ∂J∞

log


(
ωt + i∂Jt∂Jt(φt + φ∞)

)n
ωnt

+ ∂J∞ ◦ a
1,0
t

log


(
ωt + i∂Jt∂Jt(φt + φ∞)

)n
ωnt


+ia1,0

t ∧ a
0,1
t

log


(
ωt + i∂Jt∂Jt(φt + φ∞)

)n
ωnt

 .
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We get an estimate
q−1∑
j=0

� ∞
0
|wε(t)|2

∥∥∥∥∂jt ((ρωt+i∂Jt∂Jt (φt+φ∞) − ρω∞+i∂J∞∂J∞φ∞

)
∧
(
ωt + i∂Jt∂Jt(φt + φ∞)

)n−1
)∥∥∥∥

L2
4(p−j)(g∞)

≤ C +
q−1∑
j=0

� ∞
0
|wε(t)|2

∥∥∥∥∥∥∂jt
log


(
ωt + i∂Jt∂Jt(φt + φ∞)

)n
ωnt

− log


(
ω∞ + i∂J∞∂J∞(φ∞)

)n
ωn∞

∥∥∥∥∥∥
L2

4(p−j)(g∞)

= C +
q−1∑
j=0

� ∞
0
|wε(t)|2

∥∥∥∥∥∥∂jt
log


(
ωt + i∂Jt∂Jt(φt + φ∞)

)n(
ω∞ + i∂J∞∂J∞(φ∞)

)n
+ log

(
ωn∞
ωnt

)∥∥∥∥∥∥
L2

4(p−j)(g∞)

≤ C +
q−1∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∂jt (Γ (ωt, ω∞, φt, φ∞) + Π (ωt, ω∞))
∥∥∥
L2

4(p−j)(g∞)

where we have set:

Γ (ωt, ω∞, φt, φ∞) =
∞∑
i=1

(−1)i+1

(
(ωt+i∂Jt∂Jt (φt+φ∞))n
(ω∞+i∂J∞∂J∞ (φ∞))n − 1

)i
i

,

Π (ωt, ω∞) =
∞∑
i=1

(−1)i+1
(ω

n
∞
ωnt
− 1)i

i
,

and used the Taylor expansion

ln x =
∞∑
i=1

(−1)i+1 (x− 1)i

i
, |x| < 1,

and T is taken sufficiently large so that this expansion is valid, which can be done since(
ωt + i∂Jt∂Jt(φt + φ∞)

)n(
ω∞ + i∂J∞∂J∞(φ∞)

)n ,
ωn∞
ωnt
→ 1

as t→∞. Pointwise we may calculate∥∥∥∣∣∣∂jt (Γ (ωt, ω∞, φt, φ∞) + Π (ωt, ω∞))
∣∣∣∥∥∥
L2

4(p−j)(g∞)

≤ C
∞∑
i=1

∥∥∥∥∥∥∥∂jt

(
ωt + i∂Jt∂Jt(φt + φ∞)

)n
−
(
ω∞ + i∂J∞∂J∞(φ∞)

)n(
ω∞ + i∂J∞∂J∞(φ∞)

)n
i
∥∥∥∥∥∥∥
L2

4(p−j)(g∞)

+C
∞∑
i=1

∥∥∥∥∂jt (ωn∞ − ωntωnt
)i
∥∥∥∥
L2

4(p−j)(g∞)

≤ C

( ∞∑
i=1

∥∥∥∂jt (ω∞ − ωt)
∥∥∥
L2

4(p−j)(g∞)
+
∥∥∥∂jt a(1,0)

t

∥∥∥
L2

4(p−j)(g∞)
+
∥∥∥∂jt a(0,1)

t

∥∥∥
L2

4(p−j)(g∞)

)

+C
(

+
∥∥∥∂jt (a1,0

t ∧ a
0,1
t

)∥∥∥
L2

4(p−j)(g∞)
+
∥∥∥∂jtφt∥∥∥

L2
4(p−j)(g∞)

)
,

so finally we obtain

‖Scalωt(φt + φ∞)− Scalω∞(φ∞)‖W4,p,q−1,wε(s)(g∞)
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≤ C1 + C2

q−1∑
j=0

� ∞
T
|wε(t)|2

∥∥∥(∣∣∣∂jt (ω∞ − ωt)
∣∣∣+ ∣∣∣∂jt a(1,0)

t

∣∣∣+ ∣∣∣∂jt a(0,1)
t

∣∣∣+ ∣∣∣∂jt (a1,0
t ∧ a

0,1
t

)∣∣∣+ ∣∣∣∂jtφt∣∣∣)∥∥∥
L2

4(p−j)(g∞)
<∞,

proving the first claim, namely that the map is well-defined. To prove differentiability, it suffices to
compute all directional derivatives

d

dw

∂ (ψt + w(φt))
∂t

+ Scalωt(ψt + w(φt + φ∞))− Scalω∞(ψ∞ + w(φ∞))|w=0

= d

dw

∂ (ψt + w(φt))
∂t

+ Scalωt+i∂Jt∂Jtψt
(w(φt + φ∞))− Scalω∞+i∂J∞∂J∞ψ∞

(w(φ∞))|w=0,

for all pairs of 2-tuples

(ψt, ψ∞), (φt, φ∞) ∈W 0
4,p+1,q,wε(s)(g∞)× L2

4(p+1)(g∞),

and prove their continuity. By a calculation formally the same as those of Section 5 below shows
that when w is sufficiently small, there is an expansion of the form:

Scalωt+i∂Jt∂Jtψt
(w(φt + φ∞))

= Scal(ωt + i∂Jt∂Jtψt) + w

(
D∗
ωt+i∂Jt∂Jtψt

Dωt+i∂Jt∂Jtψt
(φt + φ∞)

)
−1

2wgψt
(
∇gψtScal(ωt + i∂Jt∂Jtψt),∇gψt (φt + φ∞)

)
+O(w2),

and similarly

Scalω∞+i∂J∞∂J∞ψ∞
(w(φ∞))

= Scal(ω∞ + i∂J∞∂J∞ψ∞) + w
(
D∗
ω∞+i∂J∞∂J∞ψ∞

Dω∞+i∂J∞∂J∞ψ∞
(φ∞)

)
−1

2wgψ∞
(
∇gψ∞Scal(ω∞ + i∂J∞∂J∞ψ∞),∇gψ∞φ∞

)
+O(w2),

where gψt and gψ∞ are the Riemannian metrics associated to ωt + i∂Jt∂Jtψt and ω∞+ i∂J∞∂J∞ψ∞
respectively. Therefore, the directional derivative of ∂

∂t+Scalωt−Scalω∞ at (ψt, ψ∞) in the direction
of (φt, φ∞) is given by

∂(φt,φ∞)

(
∂

∂t
+ Scalωt − Scalω∞

)
(ψt, ψ∞)

∂φt
∂t

+ D∗
ωt+i∂Jt∂Jtψt

Dωt+i∂Jt∂Jtψt
(φt + φ∞)−D∗

ω∞+i∂J∞∂J∞ψ∞
Dω∞+i∂J∞∂J∞ψ∞

(φ∞)

−1
2gψt

(
∇gψtScal(ωt + i∂Jt∂Jtψt),∇gψt (φt + φ∞)

)
+1

2gψ∞
(
∇gψ∞Scal(ω∞ + i∂J∞∂J∞ψ∞),∇gψ∞φ∞

)
.

This assignment is continuous (in fact uniformly continuous) in (ψt, ψ∞) by Lemma 4.19 below,
where we note that although the proof there is give for particular metric on a projective bundle,
the proof only uses the stated properties of our path of metrics and holomorphic structures. This
proves that the map ∂

∂t + Scalωt − Scalω∞ is differentiable, and furthermore that the derivative is
given by the continuous map

d

(
∂

∂t
+ Scalωt − Scalω∞

)
: W 0

4,p+1,q,wε(s)(g∞)×L2
4(p+1)(g∞)→ L

(
W 0

4,p+1,q,wε(s)(g∞)× L2
4(p+1)(g∞), L2

4p(g∞)
)
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into the space of linear maps between the range and domain defined by the above formula. In
particular

d(0,0)

(
∂

∂t
+ Scalωt − Scalω∞

)
= ∂φt

∂t
+ D∗ωtDωt (φt + φ∞)−D∗ω∞Dω∞ (φ∞)

−1
2gt (∇gtScal(ωt),∇gt(φt + φ∞)) + 1

2g∞ (∇g∞Scal(ω∞),∇g∞φ∞) ,

as required. �

3. Yang Mills connections and the Yang-Mills flow on Riemann Surfaces

3.1. Notation. Throughout the rest of the paper we will let Σ be a Riemann surface and (E, h)
an hermitian vector bundle. We will use the convention h is linear in the first entry and conjugate
linear in the second. We will write π̃ : E → Σ for the associated projection map. From here on
out we will fix a Kähler metric gΣ on Σ with associated Kähler form ωΣ. Later we will require ωΣ
to be a constant scalar curvature metric, but in this section ωΣ will be arbitrary. A holomorphic
structure on E will be thought of as an operator ∂̄E : Ω0 (E)→ Ω0,1 (E) such that ∂̄2

E = 0. We will
denote the space of such operators by Ahol (E). If ∇A is an integrable, h-unitary connection on E,
then its (0, 1) part ∂̄A is a holomorphic structure on E such that the Chern connection (∂̄A, h) is
∇A. We will denote the space of such connections by A1,1

h (E) (because they have (1, 1) curvature).
For any such connection we will denote the corresponding holomorphic bundle (E, ∂̄A) by E . More
generally, we will always denote smooth vector bundles by ordinary letters, and holomorphic vector
bundles by script letters.

We will denote by GC the group of complex gauge transformations of E, that is, the set of
complex linear bundle automorphisms g : E → E. This group acts on Ahol (E) by

(3.1) g · ∂̄ = g ◦ ∂̄ ◦ g−1.

Note that GC also acts on the space of Hermitian metrics on E by

(3.2) g · h(u, v) = h(g−1(u), g−1(v)).

The group G of h-unitary gauge transformations is the subgroup of GC such that g · h = h. G also
acts on the space on A1,1

h (E) by

(3.3) g · ∇A = g ◦ ∇A ◦ g−1.

Since Ahol (E) ' A1,1
h (E), this action extends to an action of GC. Note, however that this latter

actions is not by conjugation.
Given two Hermitian metrics, h1 and h2, we may define an endomorphism h−1

2 h1 by

(3.4) h1(u, v) = h2(u, h−1
2 h1 (v)).

On the other hand given an Hermitian metric h and an endomorphism k, we may define a new
metric hk by

(3.5) hk(u, v) = h(k(u), v).
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3.2. Yang mills connections, and split and simple vector bundles. We define the Yang-
Mills functional

YM : A1,1
h (E)/G → R

by

(3.6) YM(A) =
�

Σ
|FA|2 dvolωΣ .

The critical points of this functional, called Yang-Mills connections on the bundle E, are
solutions to the equation

(3.7) d∗AFA = 0,

. By the Kahler identities this is equivalent to

(3.8) dAΛωFA = 0

This last equation easily implies that there is a splitting of Hermitian, holomorphic bundles:

(E , h) = (E, ∂̄A, h) = (E1, ∂̄A1 , h1)⊕ · · · ⊕ (Eq, ∂̄Aq , hq)
= (E1, h1)⊕ · · · ⊕ (Eq, hq),

where the Chern connections ∇Ai = (∂̄Ai , hi) satisfy the equations ΛωFAi = µ (Ei) IdEi , where

µ (E) =
�

Σ c1 (E) dvolωΣ

rkE
is called the slope. Clearly in this case the connection also splits as ∇A = ∇A1 ⊕ · · · ⊕ ∇Aq .
The connections Ai are called Hermitian-Yang-Mills(HYM). The existence of an Hermitian-
Yang-Mills connection is equivalent (by the Donaldson-Uhlenbeck-Yau theorem) to the slope poly-
stability of the bundle. A bundle is (poly)stable if (it is a direct sum sum of bundles of the same
slope for which) any proper sub-bundle has smaller slope.

Definition 3.1. A bundle E → Σ is called simple

(3.9) H0(End(E)) = C · IdE
The following lemma is standard.

Lemma 3.2. A stable vector bundle is in particular simple.

Lemma 3.3. Let E be a simple holomorphic vector bundle with underlying smooth bundle E. Let
h be a an hermitian metric on E, and write A = (∂E , h) for the Chern connection, and AEnd(E)

the induced connection on End(E).

C · IdE = ker ∆AEndE = ker dAEnd(E) ⊂ H0(End(E)).

Proof. Since ∆AEndE = d∗
AEnd(E)dAEnd(E) , clearly ker ∆AEndE = ker dAEnd(E) . On the other hand we

have
dAEnd(E) = ∂

End(E)
(E,h) + ∂

End(E)
A ,

so ker dAEnd(E) ⊂ ker ∂End(E)
A = H0(End(E)) = C · IdE , by simplicity. Since clearly C · IdE ⊂

ker dAEnd(E) also, we obtain the result. �



24 SIBLEY

Lemma 3.4. Let E be a holomorphic vector bundle (with underlying smooth bundle E) such that

E = E1 ⊕ · · · ⊕ El
where each Ei is stable, µ(E1) > · · · > µ(El) (so that in particular the slopes of the Ei are all
different). Let h be a an hermitian metric on E, and write A = (∂E , h) for the Chern connection,
and AEnd(E) the induced connection on End(E). Then

Cl = ker ∆AEndE = ker dAEnd(E) ⊂ H0(End(E)).

In other words, the covariantly constant sections (and so also the elements of the kernel of the
Laplacian) of EndE (which are in particular holomorphic), are exactly the diagonal endomorphisms
with constants down the diagonal. In particular, if E is stable, then ker ∆AEndE consists of precisely
the endomorphisms C · IdE.

Proof. We must show that a covariantly constant endomorphism is of the form

c1IdE1 ⊕ · · · ⊕ clIdEl .

Let F ∈ EndE such that dAEnd(E)F = 0. This says in particular that F is holomorphic, which
means that automatically the induced maps F : Ei → Ej are zero if i < j (so that µ(Ei) > µ(Ej))
and F = ciIdEi if i = j, since Ei is stable, and in particular simple. We will write Ai for the
induced connection on each bundle Ei. It is easy to check that dAEnd(E)F = 0 also implies that
d
AHom(Ei,Ej)F = 0, where AHom(Ei,Ej) is the connection on Hom(Ei, Ej) induced by Ai and Aj . In

other words, the induced map F : Ei → Ej is covariantly constant. We claim that such a map must
vanish even if µ(Ei) < µ(Ej) . This is because the kerF ⊂ Ei and ImQ ⊂ Ei will be a holomorphic
sub-bundles and moreover will be invariant under dAi and dAj respectively, since the covariant
constant condition says precisely that for any section σ of E1,we have

dAj (F (σ)) = F (dAi (σ)) .

It follows easily (see [KOB] Proposition 1.4.18) that Ei splits holomorphically as Ei = kerF ⊕S, for
some holomorphic bundle S, and Ej as Ej = ImF ⊕Q. If F is not the zero map, then we must have
that kerF = 0, since otherwise kerF and S are proper sub-bundles, contradicting the stability of
Ei. Similarly, since F is not zero, we must have that Q = 0 and ImF = Ej for the same reason. But
these two conditions taken together imply that F is an isomorphism, which is impossible since Ei
and Ej have different slopes. Therefore F : Ei → Ej must be zero whenever i 6= j, so we obtain the
desired form for F . �

3.3. The Yang-Mills flow on Riemann surfaces. Recall that the holomorphic bundle E to-
gether with h gives the Chern connection A. We can produce a one parameter family Et of holo-
morphic vector bundles associated to connections At ∈ A1,1

h (E) given by the Yang-Mills flow
starting at A0 = A :

∂At
∂t

= −d∗AtFAt ,(3.10)

A0 = A.

This equation is the gradient flow of the Yang-Mills functional. By Donaldson, it is known that the
Yang-Mills flow has a global solution on A1,1

h × [0,∞).
Using the Kahler identities, we can rewrite this equation as ∂At

∂t = dCAtΛωFAt , where the operator
dCAt : Ω0(u(E)) −→ Ω1(u(E)) is given by dCAt =

√
−1(∂̄At − ∂At). The tangent space to a GC orbit

in A1,1
h (E) at At is imdA ⊕ imdCA ⊂ Ω1(u(E)) = TAtA

1,1
h (E), and therefore we see that the flow

stays within a single complex gauge orbit.
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A precise construction of the complex gauge transformations gt which determine the Yang-Mills
flow is as follows. If we assume that At is a solution to equation 3.10 and define gt to be the unique
solution to the ordinary differential equation defined by:

∂gt
∂t

= −(iΛωFAt ◦ gt − µωΣ(E))(3.11)

g0 = IdE ,

then g∗t (A0) = At.
Note that

∂̄Hom(E,Et)(gt) = ∂̄At ◦ gt − gt ◦ ∂̄A
= gt ◦ ∂̄A − gt ◦ ∂̄A = 0,

so gt : E → Et is a holomorphic map.
The flow 3.10 deforms a given connection in the direction of the gradient d∗AFA of YM . By

results of Uhlenbeck (see [U1], [U2]), any sequence of times along the flow converges to a Yang-
Mills connection A∞ on E, giving a holomorphic vector bundle E∞. In general E∞ is not isomorphic
to E0, since by the previous discussion E∞ must either be holomorphically split or stable. On the
other hand, to any E → (Σ, ω), one can naturally associate a vector bundle (which topologically is
the bundle E) whose holomorphic structure splits as a direct sum of stable bundles as follows.

Every such E admits a filtration by sub-bundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ El−1 ⊂ El = E ,

such that the successive quotients
Qi = Ei/Ei−1

are slope stable. Such a filtration is obtained by combining the usual Harder-Narasiman filtration
of a holomorphic bundle with a Jordan-Holder (or Seshadri) filtration of a semi-stable bundle. We
will refer to this as a Harder-Narasimhan-Seshadri filtration. Although, this filtration is not
quite unique, the point is that the associated graded object

Gr (E) = ⊕iQi
is determined up to isomorphism entirely by (E , [ω]). Moreover, by the Donaldson-Uhlenbeck-Yau
theorem, each Qi admits an HYM connection, and their direct sum gives a Yang-Mills connection
AGr(E) on the bundle Gr(E). This is therefore a natural candidate for the limit of the Yang-Mills
flow. In fact the flow always converges to this connection.

Theorem 3.5. (Daskalopoulos [D], Corollary 5.19 Råde [R], Prop 7.14) The Yang-Mills flow con-
verges at infinity in the C∞ topology in the space of connections A1,1

h (E) to a Yang-Mills connection
A∞ giving rise to a holomorphic vector bundle E∞, whose underlying smooth bundle is E. In fact
E∞ = Gr(E), and A∞ = AGr(E).

Moreover, the flow converges at a rate of 1/
√
t, that is, if at ∈ Ω1(u(E)) is defined by at =

At −A∞, we have
‖at‖Cs ≤ C/

√
t

for all s and t sufficiently large.

Here, the statement that the limiting holomorphic structure is given by Gr (E) is due to Daskalo-
poulos. The statement about the rate of convergence is due to Råde. Note that although the results
of these papers give somewhat weaker convergence for the flow, this can be easily promoted to C∞
convergence, see for example Section 3 of [W].
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Lemma 3.6. If At satisfies the Yang-Mills flow, then writing At − A∞ = at for a path at ∈

Ω1(u(E)). Then we have

||∂jt at||Cs ≤ C/
√
t and ||∂jt (ΛωΣFAt − ΛωΣFA∞)||Cs ≤ C/

√
t,

for all j and s, and for t sufficiently large.

Proof. By the flow equations we have that
∂at
∂t

=
√
−1
(
∂A∞ + a0,1

t − ∂A∞ − a
1,0
t

)
(ΛωΣFA∞ + ΛωΣdA∞at + ΛωΣat ∧ at)

=
√
−1
(
∂A∞ (ΛωΣdA∞at + ΛωΣat ∧ at)

)
+
√
−1a0,1

t ∧ (ΛωΣFA∞ + ΛωΣdA∞at + ΛωΣat ∧ at)
−
√
−1 (∂A∞ (ΛωΣdA∞at − ΛωΣat ∧ at))

−
√
−1a1,0

t ∧ ((ΛωΣFA∞ + ΛωΣdA∞at + ΛωΣat ∧ at))

where at = a1,0
t + a0,1

t , for a1,0
t ∈ Ω1,0(u(E)), and a0,1

t ∈ Ω0,1(u(E)). Note that the inner product
on Ω1(u(E)) induced by gΣ and h is orthogonal with respect to the decomposition Ω1(u(E)) =
Ω1,0(u(E))⊕ Ω0,1(u(E)), so∥∥∥a1,0

t

∥∥∥2

Cs
,
∥∥∥a0,1

t

∥∥∥2

Cs
≤
∥∥∥a1,0

t

∥∥∥2

Cs
+
∥∥∥a0,1

t

∥∥∥2

Cs
= ‖at‖2Cs ≤ C/t

for t sufficiently large. Therefore

||∂tat||Cs ≤ C(‖at‖Cs +
∥∥∥a1,0

t

∥∥∥
Cs

+
∥∥∥a0,1

t

∥∥∥
Cs

) ≤ C ‖at‖Cs ≤ C/
√
t.

Similarly, all derivatives of the expression for ∂tat will yield terms involving at, a1,0
t , a1,0

t and higher
time derivatives of these, so ||∂jt at||Cs can be bounded in the same way.

We also have
ΛωΣFAt − ΛωΣFA∞ = ΛωΣdA∞at + ΛωΣat ∧ at,

so using the bound on ||∂jt at||Cs , we obtain the same bound on ||∂jt (ΛωΣFAt − ΛωΣFA∞)||Cs . �

3.4. Hermitian-Yang-Mills flow. In the above framework, the Hermitian bundle (E, h) remains
fixed while the holomorphic structure moves. It will sometimes be useful to hold the complex
structure on E defined by A0 fixed, and instead move the Hermitian metric. In particular, we will
let h evolve by the Hermitian-Yang-Mills flow

h−1
t

∂ht
∂t

= −2 (iΛωFht − µ(E)IdE) ,

where Fht is the curvature of the Chern connection Aht = (∂̄A, ht). Since we are assuming µ(E) = 0
(see the remark above) the equation becomes h−1

t
∂ht
∂t = −iΛωFht .

The Yang-Mills and Hermitian-Yang-Mills flow equations are equivalent up to gauge. If At =
gt · A0 is a solution of the Yang-Mills flow, then ht = h0g

∗
t gt is a solution of the Hermitian-Yang-

Mills flow. Notice that ht is by definition g−1
t · h0. Conversely, if ht = h0kt for a positive definite

self-adjoint (with respect to h0) endomorphism kt, then At = (kt)
1
2 A0 is real gauge equivalent to a

solution of the Yang-Mills flow. To spell out the equivalence precisely, the map:

gt : (E , h0kt) −→ (Et, h0)

is a biholomorphism and an isometry, where kt = g∗t gt. Therefore, since the YM flow exist for all
time, so does the HYM flow.
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The following calculation gives the relationship between the curvature of the connection At, and
that of Aht . The action of gt on a connection ∇A = ∂A,h + ∂̄A ∈ A1,1

h (E) , is

∇At = gt · ∇A = (g∗t )
−1 ◦ ∂A ◦ (g∗t ) + gt ◦ ∂̄A ◦ g−1

t .

Notice that gt is not metric preserving, so this is different from the action of the group G. Conjug-
ating by g−1

t we have
g−1
t ◦ ∇At ◦ gt = k−1

t ◦ ∂A ◦ kt + ∂̄A

where kt = g∗t gt. The connection k−1
t ◦ ∂A ◦ kt + ∂̄ is precisely the Chern connection (∂̄A, ht).

Therefore, composing the above formula with itself we have that

g−1
t ◦ FAt ◦ gt = Fht .

3.5. Examples. In this section we give examples where the conditions of the main theorem hold.

Example 3.7. We recall the example sketched in the introduction. Namely, consider a rank two
bundle E → Σ which is given as a non-split extension

0→ L1
ı→ E π→ L2 → 0,

where µωΣ(L1) > µωΣ(L2). By construction, this sequence is precisely the Harder-Narasimhan
filtration of E , since the condition on the slope implies that L1 destabilises E . As L1 and L2 are
line bundles they are stable, and thus Gr(E) = L1 ⊕ L2 satisfies the condition stated in Theorem
1.3. Suppose L1 and L2 also satisfy the conditions Hom(L2,L1) = 0. We claim that E must also
be simple. Applying Hom(−, E), we obtain an exact sequence

0→ Hom(L2, E) π∗→ Hom(E , E) ı∗→ Hom(L1, E).

We claim that the first map is 0. then we must have im(f) ⊂ ker(π) = L1, since otherwise π ◦ f
gives a non-trivial map L2 → L2, and since L2 is stable this map must be a constant multiple of
IdL2 , giving a splitting of the sequence. Then by assumption Hom(L2, E) = Hom(L2,L1) = 0, and
so we obtain an injection Hom(E , E) ↪→ Hom(L1, E). On the other hand, any map f : L1 → E ,
must have image contained in L1, since otherwise π ◦ f : L1 → L2 gives a non-trivial map, which
is impossible by the condition on the slopes. Therefore we have Hom(E , E) ' Hom(L1,L1) = C,
since L1 is stable. Note that the extensions of L1 by L2 are classified by H1(L∗2⊗L1). Therefore it
suffices to find line bundles satisying the condition H0(L∗2 ⊗L1) = 0 and dimH1(L∗2 ⊗L1) > 0. As
in [HA], we may find line bundles with deg(L1) = 1 and deg(L2) = 0 satisfying the first condition, as
deg(L∗2⊗L1) = 0, and there are plenty of non-effective divisors of degree 1. If we assume g(Σ) = 3,
then the Riemann-Roch theorem gives dimH1(L∗2⊗L1) = g−1−deg(L1) = 1 so we obtain explicit
examples as soon as g = 3. In fact, the Picard groups of line bundles of degrees 1 and 0 are both
three dimensional, and we have only used the open condition dimH1(L∗2 ⊗ L1) > 0, so there is a
six dimensional family of such extensions.

4. Some background on projective bundles

4.1. Projective bundles, connections, and holomorphic structures. We fix the bundle
(E, h)→ (Σ, ωΣ) as in the last section. We will study the projectivisation P (E) which is a smooth
manifold equipped with a natural smooth projection map π : P (E) → Σ. There is also a project-
ivisation map ξ : E → P (E) that takes a vector v ∈ E to its projective equivalence class [v]. By
construction we have π̃ = π ◦ ξ.

Now fix a connection ∇A ∈ A1,1
h (E) on (E, h) giving a the holomorphic bundle E as in the

previous section. Then P (E) is a complex manifold and the map π : P (E)→ Σ is holomorphic. In
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particular ∇A determines an integrable almost complex structure on P (E) denoted by J , which
we will now describe. Recall that the vertical bundle is the fixed smooth subbundle VE given by
the kernel of the map dπ̃ : TE → TΣ The choice of connection ∇A is tantamont to a choice of
horizontal complementary subbundle HA

E ⊂ TE (with respect to gΣ) so that we obtain a splitting

(4.1) TE = VE ⊕HA
E .

Since each fibre of E is a vector space, for any v ∈ E with π̃ (v) = x for the tangent space to the
fibre we have TvEx ∼= Ex and in fact there is a global isomorphism VE ∼= π̃∗E. The map dπ̃ then
gives a smooth isomorphism HA

E
∼= π̃∗(TΣ) for any connection A. The horizontal-vertical splitting

then gives an isomorphism
TE ∼= π̃∗(E)⊕ π̃∗(TΣ).

We may define an almost complex structure J̃A on the total space of E by pulling back the direct
sum

jE ⊕ JΣ

under this isomorphism, where jE is multiplication by i on the fibres, and JΣ is the (integrable)
almost complex structure on Σ. The integrability condition on A can be used to show that this
almost complex structure is integrable, and so defines the structure of a complex manifold on E

(and therefore that of a holomorphic vector bundle). By the chain rule we have dπ̃ = dπ ◦ dξ,
therefore since ξ is a submersion, dξ restricts to HA

E to an isomorphism onto its image, which we
denote by HA, and gives a surjection of VE onto V = ker dπ. We therefore obtain a smooth splitting

(4.2) TP(E) = V ⊕HA.

Since v ∈ ker dξ if and only if jE(v) = iv ∈ ker dξ, the almost complex structure given above
descends to P(E) to give an integrable almost complex structure JA.

Then JA gives the complex structure associated to P(E), which could also be obtained from the
holomorphic charts for E . Notice that the d-bar operator on functions, which will appear throughout
the rest of the paper may be defined by

(4.3) ∂JA = d− iJAd.

In the sequel we will simply denote these operators by J , and ∂J whenever the connection on E is
fixed.

Finally since dπ is actually a map holomorphic bundles, the bundle V inherits a holomorphic
structure from TP(E). We write V for the resulting holomorphic bundle, and writing H for the
quotient, we obtain an exact sequence of holomorphic bundles

(4.4) 0 −→ V −→ TP (E) −→ H −→ 0

where H is isomorphic as a smooth bundle to HA. In the sequel we will write H for this latter
bundle if a fixed connection is understood.

4.2. Gauge diffeomorphisms and moving holomorphic structures. The gauge transform-
ations gt introduced in the last section induce diffeomorphisms g̃t : P(E) → P(E) by g̃t(x, [v]) =
(x, [g̃t(v)]). For the moving holomorphic structure Jt, associated with the connection At, we have
an associated operator ∂̄Jt of smooth functions of P(E), and its conjugate ∂Jt , so that for each t
we have d = ∂̄Jt + ∂Jt . Since g̃t : P(E)→P(Et) is holomorphic we have that

∂̄J ◦ g̃t∗ = g̃∗t ◦ ∂̄Jt
so that

∂̄Jt = (g̃−1
t )∗ ◦ ∂̄J ◦ g̃t∗.
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Then we can write g̃∗t ◦ ∂̄Jt + g̃∗t ◦ ∂Jt = g̃∗t ◦ d = d ◦ g̃∗t = ∂J ◦ g̃∗t + ∂̄J ◦ g̃∗t which implies that

∂Jt = (g̃−1
t )∗ ◦ ∂J ◦ g̃∗t .

4.3. The hyperplane bundle and its curvature. Given a holomorphic vector bundle E of rank
r, and its projectivisation P(E), recall the that there is holomorphic line bundle OP(E)(−1)→ P(E),
which is the line sub-bundle OP(E)(−1) ⊂ π∗E defined fibrewise by the usual tautological line bundle
OPr−1(−1).

Then notice then we have an exact sequence of holomorphic bundles

0→ OP(E)(−1)→ π∗E → Q → 0,

and therefore OP(E)(−1) inherits a metric hOP(E)(−1) Locally we may write

iFhOP(E)(−1) = i∂̄∂logh.

If h1 and h2 are two different hermitian metrics on E, then if we define the smooth function f on
P(E) by

f ([v]) = log
(
h1(v, v)
h2(v, v)

)
,

then the curvatures of the Chern connections of satisfy iF(h1,OP(E)(−1)) = iF(h2,OP(E)(−1)) + i∂̄∂f .
The dual of this metric gives a metric hOP(E)(−1) on the hyperplane bundle OP(E)(1), and if f is

defined above then

(4.5) iF(h1,OP(E)(1)) = iF(h2,OP(E)(1)) − i∂̄∂f.

By Chern-Weil theory the cohomology class 2πc1
(
OP(E)(1)

)
is represented by iF(h,OP(E)(1)).

4.4. The moment map, the Fubini-Study form, and the decomposition of the curvature.
We will see that iF(h,OP(E)(1)) on P(E) naturally decomposes into two pieces. The splitting 4.2 yields
a decomposition:

Λ2(T ∗P(E)) = Λ2(V ∗)⊕ (V ∗ ⊗H)⊕ Λ2(H∗)
= Λ2(V ∗)⊕ (V ∗ ⊗H)⊕ (Λ2π∗(T ∗X)).

This means that for F ∈ Ω2 (P(E)) we may write F = FHH + FHV + FV V . In particular
curvature iF(h,OP(E)(1)) ∈ Ω2 (P(E)) has such a decomposition, and we will need to understand this
more precisely.

We define a map
Φh : End(E)→ C∞ (P(E))

by

(4.6) Φh (F ) ([v]) = i
hπ([v])(Fv, v)
‖v‖2h

.

Note that since End(E) = u(E, h)⊕ iu(E, h), this also defines maps

Φh : Γ(u(E, h))→ C∞ (P(E)) ,Φh : Γ(iu(E, h))→ C∞ (P(E))

from the hermitan and skew-hermitian matrices. If we combine Φh with the pullback map π∗ :
Ωk (Σ)→ Ωk (P(E)), we obtain a map

Φh : Ωk(u(E, h))→ Ωk(P(E)).
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In practice we will mostly be concerned with the case where F is the curvature FA of a connection
A. Since Σ is a Riemann surface, notice that that FA = (ΛωΣFA)ωΣ, so

(4.7) Φh(FA) = Φh(ΛωΣFA)ωΣ.

The Hermitian metric h on E defines a fundamental form Ω(h) = i
2(h− h) (or strictly speaking

the pullback of this formula to E), which we thing of as a vertical (1, 1) form on E. If we write
ıS : S(E) ↪→ E for the inclusion of the sphere bundle, then we may define a two form ωFS(h) on
P(E) which is characterised by the formula

(4.8) ξ∗(ωFS(h)) = ı∗S(Ω(h)),

where we recall that ξ : S(E) → P(E) is the projectivisation map. Since Ω(h) is vertical, so is
ωFS(h). By construction, ωFS(h) restricted to a fibre is the Fubini-Study metric associated to the
restriction of h to the corresponding fibre of E.

The following is Formula 15.15 of [DEM].

Lemma 4.1. With respect to the above splitting the two form iF(h,OP(E)(1)) decomposes as

iF(h,OP(E)(1)) = ωFS(h) + Φh (−FA) ∈ Γ
(
Λ2(V ∗)

)
⊕ Γ

(
Λ2(H∗)

)
,

where Φh (−FA) is as above, and ωFS(h) is the vertical 2-form that restricts to each fibre to be
the Fubini-Study form. In other words,

(
iF(h,OP(E)(1))

)
HH

= Φh (−FA),
(
iF(h,OP(E)(1))

)
HV

= 0, and(
iF(h,OP(E)(1))

)
V V

= ωFS(h).

4.5. Kähler metrics on P(E), P(Et) and P(E∞). For any metric h on E, and any holomorphic
structure ∂E with Chern connection ∇A = (∂E , h), inducing a complex structure J on P(E), and
for any positive integer k, we will define the two-form

ωk(h, J) = iF(h,OP(E)(1)) + kπ∗ωΣ(4.9)
= ωFS(h) + (Φh(−ΛωΣFA) + k)ωΣ.

Notice that since ωFS(h) is positive on the vertical sub-bundle V ⊂ TP(E) (and 0 on the horizontal
sub-bundle), if k > inf Φh(−ΛωΣFA), this two-form is positive definite, and therefore ωk(h, J)
defines a Kähler metric.

We will write Jt for the holomorphic structure on P(Et). For each t we have a hyperplane bundle
Lt = OP(Et)(1) → P(Et). and again h induces a metric on this line bundle whose curvature gives a
closed two form on P(Et) compatible with the holomorphic structure ∂̄Et . Throughout this section,
we fix an Hermitian metric h on E. Let V → P(E) be the vertical sub-bundle of TP(E) with fibre
V[z] = T[z]P(Ex), where π([z]) = x. Then there is an exact sequence

0 −→ Vt −→ TP(Et) −→ Ht −→ 0

where Ht is by definition the holomorphic vector bundle given by the quotient, which is smoothly
isomorphic to the complementary subbundle Ht ⊂ TP(E) to V determined by the connection At.

Then for each k we also have a one parameter family

ωk (h, Jt) = ω(h, Jt) + kωΣ

= (Φh(−ΛωΣFAt) + k)ωΣ + kωFS(h).(4.10)

for each t the ωk (h, Jt) are compatible with the complex structure Jt, for all t. In other words for
sufficiently large k, ωk (h, Jt) is a Kähler form on the complex manifold P(Et).
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In the same way we define a path of Kähler metrics on the fixed complex manifold P(E) by
applying this construction to the family of Hermitian metrics given by the HYM flow. Namely
define:

ωk (ht, J) = ω(ht, J) + kωΣ

= (Φht(−ΛωΣFht) + k)ωΣ + ωFS(ht).(4.11)

Lemma 4.2. We have
ω(ht, J) = g̃∗t (ω(h, Jt)).

Proof. By Lemma 4.12 below we have

g̃∗t (Φh (ΛωΣFAt) + k)ωΣ) = Φht (ΛωΣFht) + k)ωΣ.

For the vertical part, notice that

ı∗S ◦ g∗t (ı∗SΩ(h)) = i

2 ı
∗
S ◦ g∗t (h− h)|S(E) = i

2(ht − ht)|S(E) = ı∗SΩ(ht).

Therefore

ı∗SΩ(ht) = ı∗S ◦ g∗t (ı∗SΩ(h)) = ı∗S ◦ g∗t (ξ∗(ωFS(h)))
= ı∗S ◦ (ξ ◦ gt)∗ ωFS(h) = ı∗S ◦ (g̃t ◦ ξ)∗ ωFS(h)
= ı∗S ◦ ξ∗ (g̃∗t (ωFS(h)) = (ξ ◦ ıS)∗ (g̃∗t (ωFS(h)) ,

which implies
ωFS(ht) = g̃∗t (ωFS(h)).

Combining these two equalities, we obtain the result. �

Consider the the limiting holomorphic structure J∞ corresponding to the holomorphic structure
induced by the limiting connection A∞ of the Yang-Mills flow on E, giving the complex mani-
fold P(E, J∞) = P(Gr(E)). Then we may consider the two form ω(h, J∞) = iF∇L∞ (hL∞ ), where
∇L∞(hL∞) is the Chern connection on the line bundle L∞ = OP(E∞)(1)→ P(E∞), with the metric
hL∞ induced on L∞ by h. This gives a Kähler metric

(4.12) ωk(h, J∞) = ω(h, J∞) + kπ∗ωΣ

on the manifold P(E∞). We will write gk,∞ for the associated Riemannian metric on the smooth
manifold P(E).

4.6. Vector fields on P(E), P(Et), and P(E∞). We begin by giving a construction of smooth
vertical vector fields on P(E). An endomorphism F : E → E, defines a vertical vector field X̃F by

X̃F (v) = F (v),

where v ∈ Eπ̃(v) and where we are using the isomorphism TvEπ̃(v) ∼= Eπ̃(v).
The vector field X̃F descends to a vertical vector field XF on P(E) as follows. Recall that the

fibres T [v]P(Ex) of the bundle V ⊂ TP(E) may be identified with the space Hom([v], Ex/[v]).
Under this identification the differential dξ is identified with the map taking a vector w ∈ TvE, to
the endomorphism

λv 7→ λproj⊥[v](w) := λ

(
w − h(w, v)

h(v, v) v
)
.
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We define the value of the vector field XF at a point [v] similarly to be the endomorphism

(4.13) XF ([v]) : λv → λ

(
Fv −

hπ([v])(Fv, v)
‖v‖2h

v

)
.

As a consequence we may also write:

XF = dξ
(
X̃F

)
,

which by the formula for the derivative is unambiguous. Notice however, that the formula for XF

depends on the choice of metric h. When we need to emphasise the metric we will write Xh
F for

this vector field, but otherwise we will omit the h.
The following lemma will be crucial to our application of the inverse function theorem later on.

Lemma 4.3. Let E −→ Σ be a simple bundle. Then P(E) has no holomorphic vector fields if
g(Σ) ≥ 2. If g(Σ) = 1, then TΣ is trivial and the only holomorphic vector fields on P(E) are
pullbacks of the constant vector fields on Σ. Since the Yang-Mills flow stays inside of a single
complex gauge orbit, this remains true for the bundles Et determined by the flow.

Proof. The usual short exact sequence

0 −→ V −→ TP(E) −→ π∗ (TΣ) −→ 0,

gives a long exact sequence in cohomology of the form

0→ H0 (V)→ H0 (TP(E))→ H0 (π∗ (TΣ))→ · · ·

Then either H0 (π∗ (TΣ)) = H0 (TΣ) = 0 (if g ≥ 2), or H0 (π∗ (TΣ)) = H0 (TΣ) = C (if g = 1). In
the former case we obtain

H0 (TP(E)) ' H0 (V) ,
and in the latter case we have a splitting

H0 (TP(E)) ' H0 (V)⊕ C.

We may identifyH0(V) with the traceless endomorphisms, that is sections H0(End0 (E)) = 0 (since
E is simple), as follows. The globalisation of the the Euler sequence on the fibres to P(E) is given
by

0 −→ C→ π∗E ⊗ OP(E)(1) −→ V −→ 0.
Taking the pushforward of this sequence and using the push-pull formula, and the fact that
π∗OP(E)(1) ' S1E∗ = E∗, we obtain an exact sequence on Σ :

0 −→ C→ E ⊗ E∗ = End(E) −→ π∗V −→ 0.

The long exact sequence in cohomology then gives

0 −→ C −→ H0(End(E)) −→ H0(π∗V) = H0(V) −→ 0,

where we have also used the definition of the pushforward. The map H0(End(E))→ H0(V) may be
thought of as the map F 7→ (XF )1,0, whose kernel may be identified with the constant multiples of
the identity on E . We therefore obtain an isomorphism

H0(End0(E)) ' H0(End0(E))/C ' H0(V).

Then we have either:

H0 (TP(E)) = 0,
or H0 (TP(E)) = C,
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according to the genus. �

Corollary 4.4. If E is simple, for any Kähler metric ω on P(E) (and in particular for ωk(h, J))
we have

kerD∗ωDω ' C.

Proof. This follows directly form Equation 2.4 and Lemma 4.3. �

Lemma 4.5. If A ∈ A1,1
h (E) and J is the holomorphic structure on P(E) corresponding to ∂A,

with corresponding horizontal and vertical bundles H and V, then for F ∈ Γ (End(E)) we have

(dΦh (F ))H = Φh (dAF ) .

If F1 ∈ Γ(u(E)), F2 ∈ Γ(iu(E)) we have,

(dΦh (F1))V = ωFS(h) (XF1 ,−) , (dΦh (F2))V = −iωFS(h) (JXF2 ,−) .

As a consequence, if F = F1 + F2 is covariantly constant with respect to A, then

dΦh (F ) = ωFS(h) (XF ,−)− iωFS(h) (JXF2 ,−) .

In particular if A is Yang-Mills,

dΦh (ΛωΣFA) = ωFS(h)
(
XΛωΣFA

,−
)
.

Proof. By definition, for any point x ∈ Σ, and any v with π̃(v) = x, Hv ⊂ TvE , is defined by
Hv = dσx(TxΣ) for some section σ of E defined locally near x for which σ(x) = v and (∇σ)x = 0.
Then for such a choice of x, v, and σ, and a vector field XΣ ∈ Γ (TΣ), and defining dσ(XΣ) = X =
XH +XV we may write

d(Φ̃h(F ) ◦ σ)x (Xx) =
(
dΦ̃h(F )

)
v
◦ dσx ((XΣ)x)

=
(
dΦ̃h(F )

)
v

(
(XH)v + (∇̂Xσ)v

)
=

(
dΦ̃h(F )

)
v

(
(XH)v + (∇Xσ)x

)
=

(
d(Φ̃h(F ))H

)
v

((XH)v) ,

where we have used the hat notation to again to denote the pullback of the section ∇Xσ and the
basic fact that this section (thought of as a vertical vector field) is precisely the vertical component
of dσ; as well as the defining condition for σ at x. On the other hand since A is an hermitian
connection

d(Φ̃h(F ) ◦ σ)x (Xx) = (idh(F (σ), σ))x ((XΣ)x)

=
(
ih(dA(F (σ)(XΣ)), σ)− ih(F (σ),∇XΣ

A σ)
)
x

=
(
ih(dA(F )(σ)(XΣ)− F ◦ ∇XΣ

A σ, σ)− ih(F (σ),∇XΣ
A σ)

)
x

= ih(dA(F )(σ), σ)x (XΣ)x = Φ̃h(dAF (XΣ)x))(σ(x))

= Φ̃h(dAF ))(σ(x)) ((XH)v) .

Since v was arbitrary we obtain
d(Φ̃h(F ))H = Φ̃h(dAF )).

On the other hand, by construction Φ̃h (F ) = Φh (F ) ◦ ξ so

Φh(dAF )) = Φ̃h(dAF )) ◦ ξ = ξ∗d(Φ̃h(F ))H
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= d(ξ∗Φ̃h(F ))H = d(Φh(F ))H ,

and we obtain the first result. The other results amount to the statement that the restriction of
Φh(F ) to the fibres is a moment map. �

Corollary 4.6. If A ∈ A1,1
h (E) and J is the holomorphic structure on P(E) corresponding to ∂A,

for F1 ∈ u(E), F2 ∈ Γ(iu(E)) we have

XF1 = J
(
∇gk(h,J)Φh (−F )

)
V
, iXF2 =

(
∇gk(h,J)Φh (F )

)
V

If F = F1 + F2 is covariantly constant with respect to A, then

XF1 − iJXF2 = J∇gk(h,J)Φh (−F ) .
In particular, if A is Yang-Mills, then

XΛωΣFA
= J∇gk(h,J)Φh (−ΛωΣFA) .

Proof. By the previous lemma, for F1 ∈ Γ(u(E)), F2 ∈ Γ(iu(E)) we have

(dΦh (F1))V = ωFS(h) (XF1 ,−) = gFS(h) (JXF1 ,−) ,
(dΦh (F2))V = −iωFS(h) (JXF2 ,−) = gFS(h) (XF2 ,−) ,

so we must have
JXF1 =

(
∇gk(h,J)Φh (F1)

)
V
, XF1 =

(
∇gk(h,J)Φh (F1)

)
V
,

which gives the first result. If F is covariantly constant with respect to A, then again by the previous
lemma we obtain,

dΦh (F1) = ωFS(h) (XF1 ,−) + Φh (dAF1) = gFS(h) (JXF ,−) + Φh (dAF1)
= gk(h,J) ((JXF1 ,−)) + Φh (dAF1) ,
= gk(h,J) ((JXF1 ,−))

dΦh (F2) = igk(h,J) ((XF2 ,−)) + Φh (dAF2)
= igk(h,J) ((XF2 ,−)) ,

so that
dΦh (F ) = gk(h,J) ((JXF1 + iXF2 ,−))

JXF1 + iXF2 = ∇gk(h,J)Φh (F )
giving the second result. If A is Yang-Mills then by equation 3.8, ΛωΣFA is covariantly constant
with respect to A, so we obtain the final result. �

Lemma 4.7. Let E be a holomorphic vector bundle with underlying smooth bundle E, and F ∈
Γ(EndE). If F ∈ H0(End(E)) is a holomorphic endomorphism, the vector field XF is real holo-
morphic. That is, (XF )1,0 ∈ T 1,0(P(E)) is a holomorphic vector field.

Proof. Recall that XF is the image under dξ : TE → TP(E) of the vertical vector field X̃F on
E defined by X̃F (v) = Fv. Since the vertical sub-bundle VE ↪→ TE may be identified canonically
with the pullback bundle π̃∗E, where π̃ : E → Σ, X̃F : E → π̃∗E is the composition of the map
F : E → E with the canonical section σ : E → π̃∗E given by σ(v) = v. Clearly, considered as a map
E → π̃∗E , σ is holomorphic, so if F : E → E is holomorphic, the map X̃F : E → π̃∗E is holomorphic.
Then since ξ : E →P(E) is holomorphic, the map TE →T 1,0(P(E)) given by composing dξ with the



LONG-TIME EXISTENCE FOR THE CALABI FLOW ON RULED MANIFOLDS 35

isomorphism of smooth bundles TP(E) ' T 1,0(P(E)), is a holomorphic map, and since the image of
X̃F under this map is precisely (XF )1,0, we obtain the result. �

Lemma 4.8. Suppose g(Σ) ≥ 2. Assume that the Harder-Narasimhan filtration of the bundle E is
equal to its Harder-Narasimhan-Seshadri filtration, so that in particular the slopes of the summands
of Gr(E) are all different. Then there are isomorphisms and equalities

H0(TP(E∞)) = h (P(E∞)) = {(XF )(1,0) | F ∈ H0(End0(E))} ' H0(End0(E)),
k (P(E∞))⊕ J∞k (P(E∞)) = {(XF )(1,0) | F ∈ Γ(End0(E)), dA∞F = 0}

= {(XF )(1,0) | F ∈ Γ(End0(E)), F = ⊕iciIdEi , ci ∈ C} ' Cm,
k (P(E∞)) = {∇1,0

gk,1(J∞,h)Φh(iF ) | F ∈ Γ(u(E)), dA∞F = 0},

= {(XF )(1,0) |F ∈ Γ(u(E)), dA∞F = 0}
= {(XF )(1,0) | F ∈ Γ(u(E)), F = ⊕iciIdEi , ci ∈ iR} ' Rm.

where m is the length of the Harder-Narasimhan filtration of E. The space of Hamiltonian Killing
fields on P(E∞) is given by:

ham(J∞, gk,1(J∞, h), ωk,1(J∞, h)))
= {J∞∇gk,1(J∞,h)Φh(F ) | F ∈ Γ(u(E)), dA∞F = 0}
= {J∞∇gk,1(J∞,h)Φh(F ) | F ∈ Γ(u(E)), F = ⊕iciIdEi ci ∈ iR}
= {XF | F ∈ Γ(u(E)), F = ⊕iciIdEi} ' Rm.

Therefore in particular we have

kerD∗(ωk,1(J∞,h))D(ωk,1(J∞,h))|C∞(X,R) ' Rm+1.

Proof. Exactly as in the proof of Lemma 4.3 we have an exact sequence

0 −→ H0 (V∞) −→ H0 (TP(E∞)) −→ H0 (π∗ (TΣ)) −→ · · · ,

and since H0 (π∗ (TΣ)) = 0, and pushing forward the corresponding Euler sequence on P(E∞) we
obtain isomorphisms:

H0 (End0(E∞)) ' H0 (V∞) ' H0 (TP(E∞)) ,
with the map H0 (End(E∞)) → H0 (V∞) being given by F 7→ (XF )1,0, whose kernel may be
identified with the constant multiples of the identity on E , where by the previous lemma, this map
is well-defined, and gives the above isomorphism. Then we have

H0(TP(E∞)) = {(XF )1,0| F ∈ H0(End(E))} = h,

where the second equality comes from the fact that all vector fields of this form have zeros.
By the previous paragraph, we know that we may write any vector field in H0 (TP(E∞)) as

(XF )1,0 for F ∈ H0 (End(E∞)). We will write F = F1 + F2, for F1 ∈ Γ(u(E)) and F2 ∈ Γ(iu(E)).
Note that by Corollary 4.6

XF1 = J∞
(
∇gk,1(J∞,h)Φh(−F1)

)
V∞

, XF2 =
(
−i∇gk,1(J∞,h)Φh(F2)

)
V∞

XF = J∞
(
∇gk,1(J∞,h)Φh(−F1)

)
V∞
−
(
i∇gk,1(J∞,h)Φh(F2)

)
V∞

so that

(XF )1,0 = 1
2

(
J∞

(
∇gk,1(J∞,h)Φh(−F1)

)
V∞
− iJ∞

(
J∞

(
∇gk,1(J∞,h)Φh(−F1)

)
V∞

))
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+1
2

((
−i∇gk,1(J∞,h)Φh(F2)

)
V∞
− iJ∞

(
−i∇gk,1(J∞,h)Φh(F2)

)
V∞

)
= 1

2
(
∇gk,1(J∞,h)iΦh(−iF1)

)
V∞
− iJ∞

(
∇gk,1(J∞,h)iΦh(−iF1)

)
V∞

+1
2

((
∇gk,1(J∞,h)Φh(−iF2)

)
V∞
− iJ∞

(
∇gk,1(J∞,h)Φh(−iF2)

)
V∞

)
=

((
∇gk,1(J∞,h)(Φh(−i(F1 + F2)))

)
V∞

)(1,0)

=
((
∇gk,1(J∞,h)(Φh(−iF ))

)
V∞

)(1,0)

By the second part of Lemma 4.5 we obtain that if dA∞F = 0,

(dΦh(−iF ))H∞ = Φh (dA (−iF ))) = 0.

Therefore
(∇gk,1(J∞,h)(Φh(−iF )))H∞ = 0,

and we obtain

(XF )1,0 = ∇1,0
gk,1(J∞,h)(Φh(−iF ))

= ∇1,0
gk,1(J∞,h)(Φh(−iF1)) +∇1,0

gk,1(J∞,h)(Φh(−iF2))

= ∇1,0
gk,1(J∞,h)(Φh(−iF1) + J∞∇1,0

gk,1(J∞,h)(Φh(F2)),

where we note that
Φh(−iF1),Φh(F2)

are imaginary valued. We therefore obtain

{(XF )(1,0) |F ∈ Γ(End0(E)), dA∞F = 0} ⊂ k (P(E∞))⊕ J∞k (P(E∞)) .

Furthermore, if F2 = 0, then

(XF )1,0 = ∇1,0
gk,1(J∞,h)(Φh(−iF1),

so if dA∞F = 0, then (XF )1,0 has imaginary holomorphy potential if and only if F ∈ Γ(u(E)), and
we obtain

{∇1,0
gk,1(J∞,h)Φh(iF ) | F ∈ Γ(u(E)), dA∞F = 0} ⊂ k (P(E∞))

On the other hand, suppose that
XF = i∇1,0

gk,1(J∞,h) (φ)
for some real valued function φ. Then since XF is vertical, in particular we have

(∇1,0
gk,1(J∞,h) (φ))H∞ = 0,

and by the above calculation(
∇1,0
gk,1(J∞,h)(Φh(−iF ))

)
V∞

= i∇1,0
gk,1(J∞,h) (φ)

=⇒
(
∇gk,1(J∞,h)(Φh(−iF ))

)
V∞

= i∇gk,1(J∞,h) (φ)

which means that

d (Φh(−iF ))− iφ) = Φh(−idA∞F )
=⇒ ∂J∞ (Φh(−iF ))− iφ) = Φh(−i∂A∞F ) = 0,
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since F is holomorphic. Therefore Φh(−iF )) and iφ differ by a constant and in particular

0 = d (iφ))H∞ = Φh(−idA∞F ),

so we obtain dA∞F = 0, and therefore we get the other inclusion

k (P(E∞)) ⊂ {∇1,0
gk,1(J∞,h)Φh(iF ) | F ∈ Γ(u(E)), dA∞F = 0}.

The inclusion

k (P(E∞))⊕ J∞k (P(E∞)) ⊂ {(XF )(1,0) |F ∈ Γ(End0(E)), dA∞F = 0}

follows in the same way. The equalities of these sets with

{(XF )(1,0) | F ∈ H0(End0(E)), F = ⊕iciIdEi , ci ∈ C},
and {(XF )(1,0) | F ∈ Γ(u(E)), F = ⊕iciIdEi , ci ∈ iR}

respectively, follow by Lemma 3.4
By Remark 2.3, using the description of k above, there is a bijection

k → ham(J∞, gk,1(J∞, h), ωk,1(J∞, h)))

∇1,0
gk,1(J∞,h)(Φh(iF )) 7→ 1

2J∞∇gk,1(J∞,h)Φh(F ).

For F ∈ Γ(u(E)) and dA∞ (F ) = 0, so we obtain the first description of ham(J∞, gk,1(J∞, h), ωk,1(J∞, h))).
The second description of this space is obtained by applying Lemma 3.4. By the last part of Co-
rollary 4.6, we obtain

XF = J∞

(
∇gk,1(J∞,h)(

1
2Φh(F ))

)
,

so we obtain the third description as well. �

4.7. Evolution equations.

Lemma 4.9. If ht satisfies Hermitian-Yang-Mills flow then

(4.14) ∂

∂t
iF(ht,OP(E)(1)) = 2i∂̄J∂JΦht(ΛωFht).

More generally, for any path of metrics ht, we have that

(4.15) ∂

∂t
iF(ht,OP(E)(1)) = i∂J∂JΦht(ih−1

t ∂tht).

Proof. We have

2Φht((ΛωFht − iµ(E)IdE))([v]) = i
ht(2(ΛωFht − iµ(E)IdE)v, v)

‖v‖ht
= i

ht(ih−1
t ∂thtv, v)
||v||ht

= −
ht(v, h−1

t
∂ht
∂t v)

‖v‖ht
= −∂ht

∂t
(v, v)/ ‖v‖ht .

If we define ft ∈ C∞ (P(E)) by

ft ([v]) = log

(
ht(v, v)
h(v, v)

)
,

then the the relationship between the metrics hLt and hL on the line bundle L = OP(E)(1)→ P(E)
is given by hLt = e−fthL, and so we have

iF(ht,OP(E)(1)) = iF(h,OP(E)(1)) − i∂̄J∂Jft.
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and clearly we also have
∂ft ([v])
∂t

= ∂ht
∂t

(v, v)/ ‖v‖ht ,

so that

2i∂̄J∂JΦht(ΛωFht) = 2i∂̄J∂JΦht(ΛωFht − iµ(E)IdE) = − ∂

∂t
i∂̄J∂Jft = ∂

∂t
iF(ht,OP(E)(1)).

The more general statement follows from the exact same proof, as we have only used the Hermitan-
Yang-Mills equations in the first line. �

Lemma 4.10. Let gt be the complex gauge transformations defined by equation 3.11, and g̃t the
induced diffeomorphisms. The (time-dependent) infinitesimal generator of the one parameter family
of diffeomorphisms g̃t is given by the vector field −XiΛωΣFAt

. That is, we have an equation

(4.16) ∂g̃t
∂t

= −XiΛωΣFAt
(g̃t).

In particular,
∂ω̂k,1(t)
∂t

= g̃∗t

(
∂ωk,1(t)
∂t

+ L−XiΛωΣFAt
(ωk,1(t))

)
,

so that

(g̃−1
t )∗

(
∂ω̂k,1(t)
∂t

)
C∞→ L−XiΛωΣFA∞

(ωk,1,∞) = L−∇gk,1(J∞,h)(Φh(ΛωΣFA∞ )) (ωk,1,∞)

= 2i∂J∂J (Φh(ΛωΣFA∞)) .

Proof. Let Ft ∈ Γ(iu(E)) be a one parameter family. Recall the vector fields X̃Ft ∈ Γ(TE) defined
by v 7→ Ftv. Then with respect to the Riemannian metric on TE ' π̃∗E induced by h, these are
the gradients of the functions

Φ̃h (Ft) : E → R
v 7→ h(Ftv, v),

and the negative (time dependent) gradient flow of this path of functions is
∂vt
∂t

= −Ftvt.

The projection of the gradient of X̃Ft onto the unit sphere bundle S (E) ⊂ E, is given by the vector
field

w 7→
(
Ft −

h(Ftw,w)
h(w,w) IdE

)
w.

Because this vector field is homogenous, taking projections of both sides of the above flow to the
sphere bundle, we see that the projection wt : R→ S (E) of the path vt to S (E) solves the equation

∂wt
∂t

= −
(
Ft −

h(Ftwt, wt)
h(wt, wt)

IdE

)
wt.

In the same way, projecting to the projectivisation, the image [wt] : R→ P(E) satisfies the equation
∂[wt]
∂t

= −XFt ([wt]) .

Now let gt be the complex gauge transformations defining the Yang-Mills flow. By equation 3.11
we have that for any v ∈ E,

∂gt(v)
∂t

= −iΛωΣFAt(gt(v)).
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In other words vt = gt(v) satisfies the (time-dependent) gradient flow equation above, and therefore
we have

∂[gt(v)]
∂t

= −XiΛωΣFAt
([gt(v)])

for any v, and by the definition of g̃t this says that
∂g̃t
∂t

([v]) = −XiΛωΣFAt
(g̃t ([v]))

for every [v] ∈ P(E), which is precisely the stated result.
The second statement follows immediately from this, and formula for the time derivative of

the pullback of family of differential forms by a family of diffemorphisms, the convergence of the
Yang-Mills flow at infinity, and also the formula

L∇gφω = 2i∂J∂Jφ,

which is valid for any Kähler triple (g, ω, J) and any smooth function φ. �

4.8. Decomposition of C∞(P(E)). Since the scalar curvature of the metrics we will construct is
a smooth function on P(E), we will need a more precise description of the space of such functions.
First we will consider the case when we fix the metric h and holomorphic structure ∂̄A on E giving
the holomorphic bundle E , (inducing a holomorphic structure J on P (E)).

Note that we have a natural inclusion π∗C∞(Σ) ↪→ C∞(P(E)). We may define a map πΣ∗ :
C∞(P(E))→ π∗C∞(Σ) by the pullback to P(E) of the integration over the fibres, namely

πΣ∗(f)([v]) = π∗
(�

P(Ez)
f · ωr−1

FS

)
,

where π([v]) = z.
Clearly for f ∈ π∗C∞(Σ), we have f = 1

vol(Pr−1)πΣ∗(f). If we denote by C∞0 (P(E)) ↪→ C∞(P(E))
the subspace of smooth functions whose restriction to each fibre has mean value zero, and define
p : C∞(P(E))→ C∞0 (P(E)), by p(f) = f − 1

vol(Pr−1)πΣ∗(f) ∈ C0(P(E)), there is an exact sequence

0→ π∗C∞(Σ)→ C∞(P(E)) p→ C∞0 (P(E))→ 0,

and the inclusion C∞0 (P(E)) ↪→ C∞(P(E)) gives a splitting:

C∞(P(E)) = π∗C∞(Σ)⊕ C∞0 (P(E)),

corresponding to the fact that each function f can be written as

f = 1
vol(Pr−1)πΣ∗(f) + p(f).

There is a further decomposition of C∞0 (P(E)) as follows. Denote by Φh (Γ(su(E, h)) , the set of
C∞ functions in the image of the traceless endomorphisms of E under Φh. For each fibre P(Ez)
one can calculate �

P(Ez)
Φh(F ) · ωr−1

FS = 0,

so that there is an inclusion Φh (Γ(su(E, h)) ↪→ C∞0 (P(E)). Then we have a splitting

C∞(P(E)) = π∗C∞(Σ)⊕ Φh (Γ(su(E, h))⊕ C∞h (P(E))⊥,

where C∞h (P(E))⊥ is the set of functions which are fibrewise L2 orthogonal to π∗C∞(Σ)⊕Φh (Γ(u(E, h)).
Note that Φh (Γ(u(E, h)) and C∞h (P(E))⊥ depend on the Hermitian metric h.
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The functions π∗C∞(Σ) are constant on the fibres. The following lemma says in particular that
the space Φh(su(E)) is also finite dimensional when restricted to the fibres. For the proof see for
example the thesis of Pook.

Lemma 4.11. For any z ∈ Σ, the space

Φh(su(Ez)) := Φh(su(E))|P(Ez) := {Φh(F )|P(Ez)|F ∈ su(E)}

is exactly the lowest eigenspace (corresponding to the eigenvalue r) of the Laplacian with respect to
the Fubini-Study metric on P(Ez).

The decomposition of the C∞(P(E)) behaves well with respect to the gauge transformations
gt and the induced diffeomorphisms g̃t. Namely, we have the following lemma which is a simple
consequence of the definitions.

Lemma 4.12. For any g ∈ GC (E), with g̃ ∈ GC (PE) its induced diffeomorphism, and any endo-
morphism F ∈ su(E, h), we have

g̃∗ (Φh (F )) = Φg·h (g∗(F )) ,

In particular, if gt ∈ GC (E) is the path of gauge transformations associated to equation 3.10, then:

(4.17) g̃∗t (Φh (ΛωΣFAt)) = Φht (ΛωΣFht) .

As a result, for each t we have a splitting

C∞(P(E)) = π∗C∞(Σ)⊕ g̃∗t (Φh (Γ(su(E, h)))⊕ g̃∗t (C∞h (P(E))⊥)
= π∗C∞(Σ)⊕ Φht (su(E, ht))⊕ C∞ht (P(E))⊥.

We may therefore write any Ψ ∈ C∞(P(E)) as

Ψ = ΨΣ + g̃∗t (ΨΦh) + g̃∗t (Ψ⊥)
= ΨΣ + Ψ̂Φh + Ψ̂⊥ = Ψ̂.

Finally, we will need the following lemma.

Lemma 4.13. The projection maps πΣ∗ : C∞(P(E))→ π∗C∞(Σ), πΦh∗ : C∞(P(E))→ Φh(su(E)),
π⊥∗ : C∞(P(E)) → C∞(P(E))⊥ onto the three components in this decomposition are continuous
with respect to the frechét topologies. In particular, if

Ψ(t) = ΨΣ(t) + ΨΦh(t) + Ψ⊥(t)

and Ψ(t)→ Ψ∞ in C∞(P(E)), then ΨΣ(t)→ ΨΣ,∞, ΨΦh(t)→ ΨΦh,∞, and Ψ⊥(t)→ Ψ⊥,∞, where
ΨΣ,∞,ΨΦh,∞, and Ψ⊥,∞ are the images under the respective projections of Ψ∞. Moreover, the rate
of convergence is preserved under the projections.

Proof. We may define an infinite rank vector bundle W → Σ, with fibres Wz := C∞(P(Ez)), so
that the space smooth sections C∞(W ) may be identified with C∞(P(E)) by the isomorphism τ :
C∞(W ) → C∞(P(E)) defined by τ(σ)([v]) = σ(z)([v]), where π([v]) = z. There is a decomposition

W = C⊕WΦh ⊕W⊥
corresponding to the fibrewise decomposition Wz = C ⊕ Φh(su(Ez)) ⊕ C∞(P(Ez))⊥. The map τ

identifies C∞(C) = C∞(Σ),C∞(WΦh), and C∞(W⊥) with π∗C∞(Σ), Φh(su(E)), and C∞(P(E))⊥
respectively. If we write πΣ, πΦh , π⊥ for the three projection maps from W onto C, WΦh , and W⊥,
then the projections πΣ∗, πΦh∗, and π⊥∗ are the compositions with τ of the maps C∞(W )→ C∞(Σ),
C∞(W )→ C∞(WΦh), and C∞(W )→ C∞(W⊥) induced by the projections. Since these latter maps
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are the induced map of smooth bundle morphisms, they are continuous with respect to the frechét
topologies. The other statements follow automatically. �

4.9. Continuity of Φh. In this subsection we show that the map Φh : su(E, h) → C∞(P(E))
behaves well with respect to convergence in the C∞ topologies. We will use the metric gk,1,∞
(which depends on k) on C∞(P(E)) to compute covariant derivatives, so we will need to estimate
Ck norms with respect to this metric uniformly in terms of the norm of a fixed metric independent
of k. For this we will give a slight modification of a result in [F].

By analogy with the discussion in Section 5.1 of [F], in the following we will consider a ball B ⊂ Σ,
centred at x0, such that there is a biholomorphism P(E∞)|B = B × Pr−1, where E∞ = (E, ∂A∞)
corresponding to the limit A∞ of the Yang-Mills flow. This biholomorphism will be arranged so
that the horizontal distribution on the central fibre Pr−1

x0 is equal to the restriction of the restriction
of the second factor in the decomposition

T (P(E∞)|B) ∼= TPr−1 ⊕ TB.

We will compare the restriction of the Kähler form ωk,1,∞ to P(E∞)|B with the product ω′k =
ωFS⊕kωB, compatible with the split complex structure JPr−1⊕JB, where ωFS is the usual Fubini-
Study form on the fibre, and ωB is the flat Kähler form on B agreeing with ωΣ at the origin.

Lemma 4.14. Let V → Σ be a smooth vector bundle and consider the pullback π∗(V ) → P(E),
and β ∈ Ck((T ∗P(E))⊗i ⊗ π∗(V )) with β = π∗(α) for α ∈ Ck((T ∗Σ)⊗i ⊗ V ). Then we have an
estimate of the form

‖β‖Cs(gk,1,∞) ≤ Ck
−i/2 ‖α‖Cs(gΣ) .

If β is not a pullback then we still have

‖β‖Cs(gk,1,∞) = O(1).

Proof. First we remark that the result is true for the product metric g′k = gFS ⊕ kgB on B × Pr−1.
This is because for the Levi-Civita connection ∇

g
′
k
for this metric (coupled to the pullback of any

connection on V ) is the direct sum ∇gFS ⊕ k∇gB of the two Levi-Civita connections on each factor
(coupled to the pullback connection on V ), with the second factor weighted by k. Since β is pulled
back from the base, it is constant on the fibres we have that ∇

g
′
k
(β) = kπ∗(∇gBα), and similarly

∇s
g
′
k

(β) = ksπ∗(∇gBα), and therefore since the expression for the pointwise norm | − |
g
′
k
of an s+ i

tensor involves the inverse of the metric 2(s+ i) times, we obtain

‖β‖
Cs(g′

k
) ≤

(
ksk−(s+i)

)1/2
‖β‖Cs(gB) = k−i/2 ‖α‖Cs(gB) .

Moreover, if the ball B is taken to be small enough, the norms ‖−‖Cs(gB) and ‖−‖Cs(gΣ) are
uniformly equivalent, and therefore we also have

‖β‖
Cs(g′

k
) ≤ k

−i/2 ‖α‖Cs(gΣ) .

By the slightly more sophisticated argument of [F] Theorem 5.2, we in fact have that ‖−‖
Cs(g′

k
)

and ‖−‖Cs(gk,1,∞) are uniformly equivalent as well, so on a very small ball B we obtain

‖β‖Cs(gk,1,∞) ≤ k
−i/2 ‖α‖Cs(gΣ) .

Covering P(E) by charts of this kind, we obtain the global estimate of this form.
The proof for the case when β is not a pullback is exactly the same except that there are terms

involving the ∇gFS as well, but these do not depend on k. �
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Lemma 4.15. Let Ft ∈ su(E, h) be a path of endomorphisms, and F∞ a fixed endomorphism. Then
Ft → F∞ in the C∞ topology with respect to the metric gΣ, at a rate of f(t), that is, for each s ≥ 0
and for t >> 0 :

‖Ft − F∞‖Cs(su(E,h),gΣ) ≤ Cf(t),
if and only if Φh(Ft) converges to Φh(F∞) in the C∞ with respect to the metric gk,1,∞ at the same
rate, that is; for each s ≥ 0 and for t >> 0 :

‖Φh(Ft)− Φh(F∞)‖Cs(P(E),gk,1,∞) ≤ Cf(t).

In particular for the path of endomorphisms given by ΛωΣFAt where At is given by the Yang-Mills
flow, we have for each s ≥ 0 and for t >> 0 :

‖Φh(ΛωΣFAt)− Φh(ΛωΣFA∞)‖Cs(P(E),gk,1,∞) ≤ C/
√
t

Proof. We consider the pullback bundle π∗(su(E, h)) → P(E) via the map π : P(E) → Σ. By
construction, a point in π∗(su(E, h)) is a pair ([v], F ) ∈ P(E) × π∗(su(E, h)), and therefore Φh

induces a bundle map
Ξ : π∗(su(E, h))→ C

defined by Ξ([v], F ) = Φh(F )([v]). This is obviously linear on the fibres, and smooth by the definition
of Φh(F )([v]), and in turn induces a linear map on the spaces of C∞ sections

Ξ∗ : C∞(π∗(su(E, h)))→ C∞(C) = C∞(P(E))

given by Ξ∗(σ)([v]) = Ξ(σ(v)). Given any F ∈ su(E, h) we may define a smooth section σF of
π∗(su(E, h)) by σF ([v]) := ([v], F ) (which is exactly the section π∗(F )), and therefore we have

Ξ∗(σF )([v]) = Ξ([v], F ) = Φh(F )([v])

for all [v] ∈ P(E), and so Φh(F ) = Ξ∗(σF ). Note that Ξ∗ is bounded (and therefore continuous)
with respect to the Banach space topologies on Cs(π∗(su(E, h))) and Cs(P(E)) for each s and is
therefore continuous with respect to the Fréchet topologies on C∞(π∗(su(E, h))) and C∞(P(E))
induced by the semi-norms defined by∥∥∥∇sgΣσ

∥∥∥
C0(π∗(su(E,h)),gk,1,∞)

and
∥∥∥∇sgk,1,∞γ∥∥∥C0(P(E),gk,1,∞)

as s ranges over all positive integers. This follows since for each s we have

‖Ξ(σ)‖Cs(P(E),gk,1,∞) ≤ C ‖Ξ‖Cs ‖σ‖Cs(π∗(su(E,h),gk,1,∞) ≤ C ‖σ‖Cs(π∗(su(E,h),gk,1,∞) .

Therefore if Ft → F∞ smoothly then σFt → σF∞ smoothly and so Φh(Ft) → Φh(F∞) smoothly as
well.

Since Ξ∗ is linear we have for each s

‖Φh(Ft)− Φh(F∞)‖Cs(P(E),gk,1,∞) = ‖Ξ∗(σFt)− Ξ∗(σF∞)‖Cs(P(E),gk,1,∞)

= ‖Ξ∗(σFt − σF∞)‖Cs(P(E),gk,1,∞)

≤ C ‖σFt−F∞‖Cs(π∗(su(E,h),gk,1,∞)

≤ C ‖Ft − F∞‖Cs(su(E,h),gΣ) ≤ Cf(t),

for t sufficiently large.
To prove the converse, we note that Ξ∗ is invertible since

Ξ∗(σF )([v]) = Φh(F )([v]) =
√
−1hs(Fv, v)

hs(v, v) = 0
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for all [v] if and only if F = 0 if and only if σF , so Ξ∗ is injective; and given f ∈ C∞(P(E)),

Ξ∗(fσIdE )([v]) =
√
−1hs(f([v])v, v)

hs(v, v) = f([v]),

so Ξ∗(fσIdE ) = f , and Ξ∗ is surjective. Therefore by the bounded inverse theorem the inverse maps

Ξ−1
∗ : Cs(C) = Cs(P(E))→ Cs(π∗(su(E, h)))

are bounded (and therefore continuous) for each s, and so the inverse is continous with respect
to the Fréchet topologies on C∞(π∗(su(E, h))) and C∞(P(E)). Therefore if Φh(Ft) → Φh(F∞)
smoothly, then Ft → F∞ smoothly. By the previous argument an estimate

‖Φh(Ft)− Φh(F∞)‖Cs(P(E),gk,1,∞) ≤ Cf(t)

for all s implies
‖Ft − F∞‖Cs(su(E,h),gΣ) ≤ Cf(t)

for all s.
The last statement follows from Theorem 3.5. �

4.10. Convergence of various quantities and operators.

Lemma 4.16. If Jt is the holomorphic structure on P(Et), where Et = (E, ∂At) with At satisfying
the Yang-Mills flow, we have for every j and m, for t >> 0 :∥∥∥∂jt (Jt − J∞)

∥∥∥
Cm(gk,1∞)

,
∥∥∥∂jt (ωk,1(t)− ωk,1,∞)

∥∥∥
Cm(gk,1∞)

≤ C/
√
t,

where the constant C is independent of k, and in particular, for all p, q, and ε

‖Jt − J∞‖W4,p+1,q,wε(t)(g∞) , ‖ωk,1(t)− ωk,1,∞‖W4,p+1,q,wε(t)(g∞) <∞.

Consequently, for any smooth function φ, we have we also have∥∥∥∂jt (∂Jt − ∂J∞)φ∥∥∥
Cm(gk,1,∞)

≤ 1/
√
t

and
∥∥∥(∂Jt − ∂J∞)φ∥∥∥

W4,p+1,q,wε(s)(gk,1,∞)
< ∞.

Proof. We have by definition

ωk,1(t)− ωk,1,∞
= ωFS(h) + (Φh (ΛωΣFAt) + k)ωΣ − (Φh (ΛωΣFA∞) + k)ωΣ − ωFS(h)
= (Φh (ΛωΣFAt)− Φh (ΛωΣFA∞))ωΣ.

From Lemma 4.15 we obtain the second stated inequality.
For the first inequality we recall that by definition Jt and J∞ are defined using the smooth

splittings
TP(E) = V ⊕Ht = V ⊕H∞,

where Ht and H∞ are complementary subbundles to V determined by At and A∞ respectively.
Namely, for any smooth vector field X ∈ Γ (TP(E)), we may write

X = XV +XHt = XV +XH∞

according to these splittings, and then

Jt(X) = jV (XV ) + JΣ(XHt)
= jV (XV ) + JΣ(XH∞),
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where jV is the complex structure on V induced from the complex structure on VE = π̃∗(E)
determined by multiplication by i on the fibres. Then to compare Jt and J∞ it suffices to compare
XHt and XH∞ . These vector fields correspond to vector fields X̃Ht ∈ Γ

(
HAt
E

)
and X̃H∞ ∈ Γ

(
HA∞
E

)
under the smooth isomorphisms HAt

E ' Ht and HA∞
E ' H∞, which are horizontal lifts of some

vector field XΣ ∈ Γ (TΣ). Now note that for any smooth section σ ∈ Γ(E), we may define a vertical
vector field σ̂ ∈ Γ (VE), by σ̂(v) = σ(x), where v ∈ Ex. Then by construction we have that

̂∇At(σ) (XΣ) = [X̃Ht , σ̂], ̂∇A∞(σ) (XΣ) = [X̃H∞ , σ̂],

so that
̂∇At −∇A∞(σ) (XΣ) = [X̃Ht − X̃H∞ , σ̂].

In other words we can think of both (∇At −∇A∞)XΣ and X̃Ht − X̃H∞ as being maps Γ(E) →
Γ (VE), and these maps are equal. From this we obtain an inequality:∥∥∥∂jt (Jt − J∞)X

∥∥∥
Cm(gk,1,∞)

≤ C
∥∥∥JΣ

(
∂jt (XHt −XH∞)

)∥∥∥
Cm(gΣ)

≤ C
∥∥∥∂jt (X̃Ht − X̃H∞

)∥∥∥
Cm(gΣ)

≤ C

(∥∥∥∂jt (At −A∞)
∥∥∥
Cm(gΣ)

)
,

and the result now follows from Lemma 3.6. The final statement of the lemma follows directly from
this and Equation 4.3. �

We define the operators ∆Ht and ∆Vt by

∆Ht (φ) = iΛωΣ

(
i∂Jt∂Jtφ

)
HtHt

∆Vt (φ) = iΛωFS(h,Jt)
(
i∂Jt∂Jtφ

)
VtVt

,

and ∆H∞ and ∆V∞ in the same way.

Lemma 4.17. For every j and m we have and every φ ∈ Cm(gk,1∞), for t >> 0 :∥∥∥∂jt (∆ωk,1(t) −∆ωk,1,∞

)
(φ)
∥∥∥
Cm(gk,1∞)

≤ C ‖φ‖Cm(gk,1∞) /
√
t,∥∥∥∂jt (∆Vt −∆V∞) (φ)

∥∥∥
Cm(gk,1∞)

≤ C ‖φ‖Cm(gk,1∞) /
√
t,∥∥∥∂jt (∆Ht −∆H∞) (φ)

∥∥∥
Cm(gk,1∞)

≤ C ‖φ‖Cm(gk,1∞) /
√
t,

where the constant C is independent of k.

Proof. We remark first of all that for any Kähler metric g with Kähler form ω, the volume form ωr

is parallel, and therefore for any covariant derivative ∇ig, and any function f we have

∇ig (f · ωr) = ∇ig (f)⊗ ωr,

so that

‖f · ωr‖Cm(g) =
(
‖f‖C0(g) + · · ·+

∥∥∥∇mg f∥∥∥
Co(g)

)
‖ωr‖C0(g)

= ‖f‖Cm(g) ,

since ‖ωr‖C0(g) = 1. In particular, for a top degree form β we have

‖β‖Cm(g) =
∥∥∥∥ βωr · ωr

∥∥∥∥
Cm(g)

=
∥∥∥∥ βωr

∥∥∥∥
Cm(g)
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Then for any j and m we have:∥∥∥∂jt ((∆ωk,1(t) −∆ωk,1,∞

)
(φ))

∥∥∥
Cm(gk,1∞)

= C

∥∥∥∥∥∥∂jt
ωk,1(t)r−1 ∧ i∂Jt∂Jt(φ)

(ωk,1(t))r − (ωk,1,∞)r−1 ∧ i∂̄J∞∂J∞(φ)(
ω
′′
k,1,∞

)r
∥∥∥∥∥∥

Cm((gk,1,∞))

= C

∥∥∥∥∥∥∥∥∂
j
t


(ωk,1,∞)r
(ωk,1(t))rωk,1(t)r−1 ∧ i∂Jt∂Jt(φ)− (ωk,1,∞)r−1 ∧ i∂̄J∞∂J∞(φ)

(ωk,1,∞)r


∥∥∥∥∥∥∥∥
Cm((gk,1,∞))

= C

∥∥∥∥∥∂jt
(

(ωk,1,∞)r

(ωk,1(t))rωk,1(t)r−1 ∧ i∂Jt∂Jt(φ)− (ωk,1,∞)r−1 ∧ i∂̄J∞∂J∞(φ)
)∥∥∥∥∥

Cm((gk,1,∞))

≤ C

∥∥∥∥∥∂jt
((

(ωk,1,∞)r

(ωk,1(t))rωk,1(t)r−1 − (ωk,1,∞)r−1
)
∧ i∂Jt∂Jt(φ)

)∥∥∥∥∥
Cm((gk,1,∞))

+C
∥∥∥∂jt ((ωk,1,∞)r−1 ∧

(
i∂Jt∂Jt(φ)− i∂̄J∞∂J∞

)
(φ)
)∥∥∥

Cm((gk,1,∞))

≤ C

∥∥∥∥∥∂jt
(

(ωk,1,∞)r

(ωk,1(t))r
(
ωk,1(t)r−1 − (ωk,1,∞)r−1

)
∧ i∂Jt∂Jt(φ)

)∥∥∥∥∥
Cm((gk,1,∞))

+C
∥∥∥∥∥∂jt

(
((ωk,1,∞)r − (ωk,1(t))r)

(
(ωk,1,∞)r−1) ∧ i∂Jt∂Jt(φ)

(ωk,1(t))r )
)∥∥∥∥∥

Cm((gk,1,∞))

+C
∥∥∥∂jt ((ωk,1,∞)r−1 ∧

(
i∂Jt∂Jt(φ)− i∂̄J∞∂J∞

)
(φ)
)∥∥∥

Cm((gk,1,∞))

≤ C

 j∑
i=0

∥∥∥∂it (ωk,1(t)− (ωk,1,∞))
∥∥∥
Cm((gk,1,∞)) +

∥∥∥∂ita0,1
t

∥∥∥
Cm((gk,1,∞))

 ‖φ‖Cm(gk,1∞)

+C

 j∑
i=0

∥∥∥∂ita1,0
t

∥∥∥
Cm((gk,1,∞)) ‖φ‖Cm(gk,1∞) +

∥∥∥∂ita1,0
t

∥∥∥
Cm((gk,1,∞)) ·

∥∥∥∂ita0,1
t

∥∥∥
Cm((gk,1,∞)) ‖φ‖Cm(gk,1∞)


≤ C ‖φ‖Cm(gk,1∞) /

√
t,

where as usual ∂Jt = ∂J∞ + a0,1
t , ∂Jt = ∂J∞ + a1,0

t so that a0,1
t and a1,0

t and all of their time
derivatives converge to 0 smoothly at a rate of 1√

t
, and where we have used the convergence of all

the quantities that appear in the above formulas as s→∞, as well as the previous lemma.
A simple calculation shows (see equation 5.20 below and substitute in i∂Jt∂Jt(φ) for the precise

formula) that for k sufficiently large

∆ωk,1(t) = ∆Vt (φ) + k−1∆Ht (φ) +O(k−2),

and the same formula holds for ∆ωk,1,∞ . Then we have(
∆ωk,1(t) −∆ωk,1,∞

)
(φ) = (∆Vt −∆V∞) (φ) + k−1 (∆Ht −∆H∞) (φ) +O(k−2).

In particular the constant in the above inequality is independent of k. Moreover, taking k →∞ we
get the second inequality in the statement of the lemma. Finally, we may write

(∆Ht −∆H∞) (φ) +O(k−1)
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= k
(
∆ωk,1(t) −∆ωk,1,∞ + ∆V∞ −∆Vt

)
(φ) ,

where the right hand side is O(1) and satisfies the required estimate. Then again taking k → ∞
we get the last inequality in the statement of the lemma. �

Lemma 4.18. For each j and m we have∥∥∥∥∂jt (D∗ωk,1(t)
D
ωk,1(t) −D∗ωk,1,∞Dωk,1,∞ (φ))

∥∥∥∥
Cm(gk,1∞)

≤ C ‖φ‖Cm(gk,1∞) /
√
t,

where the constant C is independent of k.

Proof. By equation 2.7, we have∥∥∥∥∂jt (D∗ωk,1(t)
D
ωk,1(t) −D∗ωk,1,∞Dωk,1,∞ (φ))

∥∥∥∥
Cm(gk,1∞)

≤
∥∥∥∂jt (∆2

ωk,1(t) −∆2
ωk,1,∞

)
(φ)
∥∥∥
Cm(gk,1∞)

+C
∥∥∥∂jt (Scal (ωk,1(t)) ∆ωk,1(t) (φt + φ∞)− Scal (ωk,1,∞) ∆ωk,1,∞ (φ∞)

)∥∥∥
Cm(gk,1∞)

+C
∥∥∥∥∥∂jt

(
ωk,1(t)r−2 ∧ ρωk,1(t) ∧ i∂Jt∂Jt(φ)

(ωk,1(t))r −
(ωk,1,∞)r−2 ∧ ρωk,1,∞ ∧ i∂̄J∞∂J∞(φ)

(ωk,1,∞)r

)∥∥∥∥∥
Cm(gk,1∞)

.

Applying exactly the same argument as in the previous lemma and using the fact that ∆ωk,1(t)φ and
all of its time derivatives converge smoothly, and so in particular have uniformly bounded operator
norm, we estimate:∥∥∥∂jt (∆2

ωk,1(t) −∆2
ωk,1,∞

)
(φ)
∥∥∥
Cm(gk,1∞)

=
∥∥∥∂jt (∆ωk,1(t)

(
∆ωk,1(t)φ

)
−∆ωk,1,∞∆ωk,1,∞ (φ)

)∥∥∥
Cm(gk,1∞)

≤
∥∥∥∂jt ((∆ωk,1(t) −∆ωk,1,∞

)
∆ωk,1(t)φ

)∥∥∥
Cm(gk,1∞)

+
∥∥∥∂jt (∆ωk,1,∞

(
∆ωk,1(t)φ

)
−∆ωk,1,∞ (φ)

)∥∥∥
Cm(gk,1∞)

≤ C
j∑
i=0

(∥∥∥∂it (ωk,1(t)− (ωk,1,∞))
∥∥∥
Cm((gk,1,∞)) +

∥∥∥∂ita0,1
t

∥∥∥
Cm((gk,1,∞))

)
‖φ‖Cm(gk,1∞)

+C
j∑
i=0

(∥∥∥∂ita1,0
t

∥∥∥
Cm((gk,1,∞)) +

∥∥∥∂ita1,0
t

∥∥∥
Cm((gk,1,∞)) ·

∥∥∥∂ita0,1
t

∥∥∥
Cm((gk,1,∞))

)
‖φ‖Cm(gk,1∞)

≤ C ‖φ‖Cm(gk,1∞) /
√
t,

where we have again applied lemma 4.16.
Similarly

∥∥∥∥∥∂jt
(
ωk,1(t)r−2 ∧ ρωk,1(t) ∧ i∂Jt∂Jt(φ)

(ωk,1(t))r −
(ωk,1,∞)r−2 ∧ ρωk,1,∞ ∧ i∂̄J∞∂J∞(φ)

(ωk,1,∞)r

)∥∥∥∥∥
Cm(gk,1∞)

≤ C

 j∑
i=0

∥∥∥∂it (ωk,1(t)− (ωk,1,∞))
∥∥∥
Cm((gk,1,∞)) +

∥∥∥∂ita0,1
t

∥∥∥
Cm((gk,1,∞)) +

∥∥∥∂it (ρωk,1(t) − ρωk,1,∞
)∥∥∥

Cm((gk,1,∞))


×‖φ‖Cm(gk,1∞)
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+C

 j∑
i=0

∥∥∥∂ita1,0
t

∥∥∥
Cm((gk,1,∞)) +

∥∥∥∂ita1,0
t

∥∥∥
Cm((gk,1,∞)) ·

∥∥∥∂ita0,1
t

∥∥∥
Cm((gk,1,∞))

 ‖φ‖Cm(gk,1∞)

≤ C ‖φ‖Cm(gk,1∞) /
√
t,

where the estimate on
∥∥∥∂it (ρωk,1(t) − ρωk,1,∞

)∥∥∥
Cm((gk,1,∞)) in terms of the other quantities appearing

in the above formula may be performed in exactly the same way as in Lemma 2.7, and where we
use Lemma 4.14 to conclude that the resulting constant does not depend on k.

Finally, ∥∥∥∂jt ((Scal (ωk,1(t)) ∆ωk,1(t) (φ)− Scal (ωk,1,∞)
)

∆ωk,1,∞ (φ)
)∥∥∥

Cm(gk,1∞)

≤
∥∥∥∂jt ((Scal (ωk,1(t))− Scal (ωk,1,∞)) ∆ωk,1(t) (φ)

)∥∥∥
Cm(gk,1∞)

+
∥∥∥∂jt (Scal (ωk,1,∞)

(
∆ωk,1(t) (φ)−∆ωk,1,∞ (φ∞)

))∥∥∥
Cm(gk,1∞)

≤ C
∥∥∥∂jt ((Scal (ωk,1(t))− Scal (ωk,1,∞)))

∥∥∥
Cm(gk,1∞)

‖φ‖Cm(gk,1∞)

+C
∥∥∥∂jt ((∆ωk,1(t) (φ)−∆ωk,1,∞ (φ∞)

))∥∥∥
Cm(gk,1∞)

‖φ‖Cm(gk,1∞)

≤ C/
√
t,

by the previous lemma and where again the difference of the scalar curvatures may be computed
as in Lemma 2.7 for large values of t. �

Lemma 4.19. There exist c > 0,K > 0, such that for all p, ε and q as in Lemma2.7 and every
(χ(t), χ∞) ∈W 0

4,p+1,q,wε(s)(gk,1,∞)× L2
4(p+1)(gk,1,∞) with

‖(χ(t), χ∞)‖W4,p+1,q,wε(s)(gk,1,∞)×L2
4(p+1)(gk,1,∞)

= ‖(χ(t)‖W4,p+1,q,wε(s)(gk,1,∞) + ‖χ∞‖L2
4(p+1)(gk,1,∞) ≤ c,

the operators(
d(χ(t),χ∞) − d0

) (
Scalωk,1(t) − Scalωk,1,∞

)
: W 0

4,p+1,q,wε(s)(gk,1,∞)×L2
4(p+1)(gk,1,∞)→W4,p,q−1,wε(s)(gk,1,∞),

have a uniform bound∥∥∥(d(χ(t),χ∞) − d0
) (
Scalωk,1(t) − Scalωk,1,∞

)∥∥∥ ≤ C (‖(χ(t)‖W4,p+1,q,wε(s)(gk,1,∞) + ‖χ∞‖L2
4(p+1)(gk,1,∞)

)
for the operator norm.

Proof. Applying Lemma and regrouping terms strategically, we may write

(
d(χ(t),χ∞) − d0

) (
Scalωk,1(t) − Scalωk,1,∞

)
(φt, φ∞)

=
(

∆2
ωk,1(t)+i∂Jt∂Jt (χt+χ∞) −∆2

ωk,1(t)

)
(φt)

+
(

∆2
ωk,1(t)+i∂Jt∂Jt (χt+χ∞) −∆2

ωk,1(t) + ∆2
ωk,1,∞ −∆2

ωk,1,∞+i∂J∞∂J∞ (χ∞)

)
(φ∞)

+ (Scal (ωk,1,∞)− Scal (ωk,1(t)))
(
∆ωk,1,∞+i∂J∞∂J∞ (χ∞) (φ∞)−∆ωk,1,∞ (φ∞)

)
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+Scal
(
ωk,1(t) + i∂Jt∂Jt(χt + χ∞)

) (
∆ωk,1,∞+i∂J∞∂J∞ (χ∞) (φ∞)−∆ωk,1(t)+i∂Jt∂Jt (χt+χ∞) (φt + φ∞)

)
+Scal (ωk,1(t))

(
∆ωk,1,∞+i∂J∞∂J∞ (χ∞) (φ∞)−∆ωk,1,∞ (φ∞) + ∆ωk,1(t) (φt + φ∞)−∆ωk,1,∞+i∂J∞∂J∞ (χ∞) (φ∞)

)

+

(ωk,1,∞+i∂J∞∂J∞ (χ∞))r
(ωk,1(t)+i∂Jt∂Jt (χt+χ∞))r

(
ωk,1(t) + i∂Jt∂Jt(χt + χ∞)

)r−2
∧ ρωk,1(t)+i∂Jt∂Jt (χt+χ∞) ∧ i∂Jt∂Jt (φt + φ∞)(

ωk,1,∞ + i∂J∞∂J∞(χ∞)
)r

−

(ωk,1,∞+i∂J∞∂J∞ (χ∞))r
(ωk,1(t))r (ωk,1(t))r−2 ∧ ρωk,1(t) ∧ i∂Jt∂Jt (φt + φ∞)(

ωk,1,∞ + i∂J∞∂J∞(χ∞)
)r

+
(ωk,1,∞+i∂J∞∂J∞ (χ∞))r

(ωk,1,∞)r (ωk,1,∞)r−2 ∧ ρωk,1,∞ ∧ i∂̄J∞∂J∞(φ∞)(
ωk,1,∞ + i∂J∞∂J∞(χ∞)

)r
−

(ωk,1,∞ + i∂J∞∂J∞(χ∞))r−2 ∧ ρωk,1,∞+i∂J∞∂J∞ (χ∞) ∧ i∂̄J∞∂J∞(φ∞)(
ωk,1,∞ + i∂J∞∂J∞(χ∞)

)r
+
(
Scal

(
ωk,1,∞ + i∂J∞∂J∞(χ∞)

)
− Scal

(
ωk,1(t) + i∂Jt∂Jt(χt + χ∞)

)
+ Scal (ωk,1(t))− Scal (ωk,1,∞)

)
∆ωk,1,∞+i∂J∞∂J∞ (χ∞) (φ∞) .

Arguing in exactly the same way as in the proofs of Lemmas 4.17 and 4.10 above, we conclude that
there is a bound∥∥∥(d(χ(t),χ∞) − d0

) (
Scalωk,1(t) − Scalωk,1,∞

)
(φt, φ∞)

∥∥∥
W4,p,q−1,wε(s)(gk,1,∞)

≤ C ‖(χ(t), χ∞)‖W4,p+1,q,wε(s)(gk,1,∞)×L2
4(p+1)(gk,1,∞) ‖(φt, φ∞)‖W4,p+1,q,wε(s)(gk,1,∞)×L2

4(p+1)(gk,1,∞)

+C
∥∥∥(Scalωk,1,∞ + i∂J∞∂J∞(χ∞)− Scalωk,1(t) + i∂Jt∂Jt(χt + χ∞) + Scal (ωk,1(t))− Scal (ωk,1,∞)

)∥∥∥
W4,p,q−1,wε(s)(gk,1,∞)

×‖φ∞‖L2
4(p+1)(gk,1,∞)

+C
∥∥∥ρωk,1(t)+i∂Jt∂Jt (χt+χ∞) − ρωk,1,∞+i∂J∞∂J∞ (χ∞) + ρωk,1,∞ − ρωk,1(t)

∥∥∥
W4,p,q−1,wε(s)(gk,1,∞)

×‖(φt, φ∞)‖W4,p+1,q,wε(s)(gk,1,∞)×L2
4(p+1)(gk,1,∞) .

To bound the last two terms, we generalise the argument of Lemmas 2.7-2.10 of [F] If we write
gk,1(χt+χ∞), gk,1(χ∞), gk,1(t), and gk,1,∞ for the metrics corresponding to ωk,1(t)+i∂Jt∂Jt(χt+χ∞),
ωk,1,∞ + i∂J∞∂J∞(χ∞), ωk,1(t), and ωk,1,∞, we may write

gk,1(χt + χ∞) = gk,1(t) + hk,1(χt + χ∞)
gk,1(χt + χ∞) = gk,1(χ∞) +Hk,1(χt + χ∞)

gk,1(χ∞) = gk,1,∞ + hk,1(χ∞)
gk,1(t) = gk,1,∞ +Hk,1(t)

for some symmetric two-tensors hk,1(χt + χ∞), hk,1(χ∞), Hk,1(χt + χ∞),and Hk,1(t), where

Hk,1(χt + χ∞), Hk,1(t) ∈W 0
4,p+1,q,wε(s)(gk,1,∞),

and

‖Hk,1(χt + χ∞)‖W4,p+1,q,wε(s)(gk,1,∞) ≤ C ‖(χ(t), χ∞)‖W4,p+1,q,wε(s)(gk,1,∞)×L2
4(p+1)(gk,1,∞) ,

‖hk,1(χt + χ∞)− hk,1(χ∞)‖W4,p+1,q,wε(s)(gk,1,∞) ≤ C ‖(χ(t), χ∞)‖W4,p+1,q,wε(s)(gk,1,∞)×L2
4(p+1)(gk,1,∞) ,
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‖hk,1(χ∞)‖L2
4(p+1)(gk,1,∞) ≤ ‖χ∞‖L2

4(p+1)(gk,1,∞)

may be made arbitrarily small by making

‖(χ(t), χ∞)‖W4,p+1,q,wε(s)(gk,1,∞)×L2
4(p+1)(gk,1,∞)

arbitrarily small. For the respective Levi-Civita connections, we have

∇gk,1(χt+χ∞) = ∇gk,1(t) + ak,1 (χt + χ∞) ,
∇gk,1(χt+χ∞) = ∇gk,1(χ∞) + bk,1 (χt + χ∞) ,
∇gk,1(χ∞) = ∇gk,1,∞ + ak,1(χ∞),
∇gk,1(t) = ∇gk,1,∞ + bk,1(t)

where

ak,1 (χt + χ∞) · (gk,1(t) + hk,1(χt + χ∞)) = −∇gk,1(t) (hk,1(χt + χ∞)) ,
ak,1(χ∞) · (gk,1,∞ + hk,1(χ∞)) = −∇gk,1,∞ (hk,1(χ∞)) ,

bk,1 (χt + χ∞) · (gk,1(χ∞) +Hk,1(χt + χ∞)) = −∇gk,1(χ∞) (Hk,1(χt + χ∞))
bk,1(t) · (gk,1,∞ +Hk,1(t)) = −∇gk,1,∞ (Hk,1(t))

where · is the algebraic operation carrying out the identification T ∗X ⊗ End(T ∗X) ' (T ∗X)⊗3.
From the above definitions, we obtain that

gk,1(χt + χ∞) = gk,1,∞ +Hk,1(χt + χ∞) + hk,1(χt + χ∞),
gk,1(χt + χ∞) = gk,1,∞ +Hk,1(t) + hk,1(χ∞),

∇gk,1(χt+χ∞) = ∇gk,1(t) + ak,1 (χt + χ∞) = ∇gk,1,∞ + bk,1(t) + ak,1 (χt + χ∞) ,
∇gk,1(χt+χ∞) = ∇gk,1(χ∞) + bk,1 (χt + χ∞) = ∇gk,1,∞ + ak,1(χ∞) + bk,1 (χt + χ∞) ,

and therefore in particular

bk,1 (χt + χ∞) = bk,1(t) + ak,1 (χt + χ∞)− ak,1(χ∞).

Then for the curvatures of the various metrics, we calculate

R(gk,1(χt + χ∞))−R (gk,1(t)) +R (gk,1,∞)−R (gk,1(χ∞))
= R (gk,1,∞) +∇gk,1,∞ (bk,1(t) + ak,1 (χt + χ∞))

+ (bk,1(t) + ak,1 (χt + χ∞)) ∧ (bk,1(t) + ak,1 (χt + χ∞))
−R (gk,1,∞)−∇gk,1,∞ (bk,1(t))− bk,1(t) ∧ bk,1(t)
+R (gk,1,∞)−R (gk,1,∞)−∇gk,1,∞ak,1(χ∞)− ak,1(χ∞) ∧ ak,1(χ∞)

= ∇gk,1,∞ (ak,1 (χt + χ∞)− ak,1(χ∞))
+ak,1 (χt + χ∞) ∧ bk,1(t) + bk,1(t) ∧ ak,1 (χt + χ∞)
+ak,1 (χt + χ∞) ∧ ak,1 (χt + χ∞)− ak,1(χ∞) ∧ ak,1(χ∞)

= ∇gk,1,∞ (ak,1 (χt + χ∞)− ak,1(χ∞))
+ (ak,1 (χt + χ∞)− ak,1(χ∞)) ∧ bk,1(t) + bk,1(t) ∧ (ak,1 (χt + χ∞)− ak,1(χ∞))
+ (ak,1 (χt + χ∞)− ak,1(χ∞)) ∧ (ak,1 (χt + χ∞)) + ak,1(χ∞) ∧ (ak,1 (χt + χ∞)− ak,1(χ∞))
+ak,1(χ∞) ∧ bk,1(t) + bk,1(t) ∧ ak,1(χ∞)



50 SIBLEY

Then we obtain

‖R(gk,1(χt + χ∞))−R (gk,1(t)) +R (gk,1,∞)−R (gk,1(χ∞))‖W4,p+1,q,wε(s)(gk,1,∞)

≤ C

(
‖ak,1 (χt + χ∞)− ak,1(χ∞)‖W4,p+1,q,wε(s)(gk,1,∞) + ‖ak,1(χ∞)‖L2

4(p+1)(gk,1,∞)

)
,

where by Lemma 4.14, the constant is independent of k.
In order to estimate these quantities we write:

ak,1 (χt + χ∞) · (gk,1,∞ +Hk,1(t) + hk,1(χt + χ∞))− ak,1(χ∞) · (gk,1,∞ + hk,1(χ∞))
= ∇gk,1,∞ (hk,1(χ∞)−Hk,1(t)− hk,1(χt + χ∞)) ,

so that

(ak,1 (χt + χ∞)− ak,1(χ∞)) · gk,1,∞
= ∇gk,1,∞ (hk,1(χ∞)−Hk,1(t)− hk,1(χt + χ∞))

+ak,1 (χt + χ∞) · (Hk,1(t) + hk,1(χt + χ∞)− hk,1(χ∞))
+ (ak,1 (χt + χ∞)− ak,1(χ∞)) · hk,1(χ∞)

= ∇gk,1,∞ (2 (hk,1(χ∞)− hk,1(χt + χ∞))−Hk,1(χt + χ∞))
+ak,1 (χt + χ∞) · (Hk,1(χt + χ∞) + 2 (hk,1(χt + χ∞)− hk,1(χ∞)))
+ (ak,1 (χt + χ∞)− ak,1(χ∞)) · hk,1(χ∞),

and so

‖(ak,1 (χt + χ∞)− ak,1(χ∞))‖W4,p+1,q,wε(s)(gk,1,∞)

= ‖(ak,1 (χt + χ∞)− ak,1(χ∞)) · gk,1,∞‖W4,p+1,q,wε(s)(gk,1,∞)

≤ C1
(
‖hk,1(χ∞)− hk,1(χt + χ∞)‖W4,p+1,q,wε(s)(gk,1,∞) + ‖Hk,1(χt + χ∞)‖W4,p+1,q,wε(s)(gk,1,∞)

)
+C2 ‖hk,1(χ∞)‖L2

4(p+1)(gk,1,∞) ‖(ak,1 (χt + χ∞)− ak,1(χ∞))‖W4,p+1,q,wε(s)(gk,1,∞) ,

and so for

‖(ak,1 (χt + χ∞)− ak,1(χ∞))‖W4,p+1,q,wε(s)(gk,1,∞)

≤ C

(
‖hk,1(χ∞)− hk,1(χt + χ∞)‖W4,p+1,q,wε(s)(gk,1,∞) + ‖Hk,1(χt + χ∞)‖W4,p+1,q,wε(s)(gk,1,∞)

)
(

1− 1
2c
−1 ‖hk,1(χ∞)‖L2

4(p+1)(gk,1,∞)

)
,

≤ C ‖(χ(t), χ∞)‖W4,p+1,q,wε(s)(gk,1,∞)×L2
4(p+1)(gk,1,∞)

where we have taken c < 1
2C
−1
2 . In a completely analogous way we achieve a bound

‖ak,1(χ∞)‖L2
4(p+1)(gk,1,∞) ≤ ‖χ∞‖L2

4(p+1)(gk,1,∞) ,

and so finally we get

‖R(gk,1(χt + χ∞))−R (gk,1(t)) +R (gk,1,∞)−R (gk,1(χ∞))‖W4,p+1,q,wε(s)(gk,1,∞)

≤ ‖(χ(t), χ∞)‖W4,p+1,q,wε(s)(gk,1,∞)×L2
4(p+1)(gk,1,∞) .

Since the Ricci and scalar curvatures are contractions of the full curvature, the same estimate also
applies to them, and we obtain the required bound. �
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Later we will need the the following lemma, which says that the constant in the parabolic estimate
7.10 is independent of the parameter k.

Lemma 4.20. Let Ls(t) be a path of smooth self-adjoint elliptic operators of order 4 on P(E)
converging smoothly to an operator L∞. Suppose ψ(s(t)) ∈ W4,p,q−1,wε(s)(gk,l,∞), and ψ(s(t)) ⊥
kerL∞ for all s. Then there is a constant A, depending only on p, q, ε, such that for the solution
φ(s(t)) ∈W 0

4,p+1,q,wε(s)(gk,l,∞), of the initial value problem

∂φ(s(t))
∂s

+ Ls(t) (φ(s(t))) = ψ(s(t))

φ(0) = φ0

and sufficiently large k, we have an estimate:

‖(φ(s(t))‖W4(p+1),q,wε(s)(gk,l,∞)

≤ A
(
‖φ0‖L2

4p+2
+ ‖ψ(s(t))‖W4,p,q,wε(s)(gk,l,∞))

)
.

The constant A is in particular independent of k.

5. The Approximate solutions

5.1. The approximation theorem. We fix the bundle (E, h)→ (Σ, ωΣ) and the projectivisation
P(E), as in the preceding sections, but from here on out we require ωΣ to be a metric of constant
scalar curvature. We will at times move the hermitian metric h on the bundle E, and other times
we will need to move the holomorphic structure ∂E , which is tantamount to moving the operator ∂J
on P(E). In the second case, we will need to consider various one-parameter families of geometric
objects σ(t), associated to this moving family ∂Jt . These families will always converge smoothly.
Then if we write |σ(t)| for the pointwise, the notation

σ(t) = O(k−l)

means that there is a constant C independent of t such that

|σ(t)| ≤ Ck−l.

In case we move the hermitian metric instead, we will obtain one parameter families σ̂(t) = g̃∗t (σ(t)).
Since the g̃t are not converging, these families will not converge, but by a small abuse of notation,
when we write

σ̂(t) = O(k−l),

we will simply mean that
(g̃−1
t )∗(σ̂(t)) = σ(t)

has the above stated property.
With this in mind, the main goal of this section is to write down a formal approximate solution

to the Calabi flow equation in the sense that for a sufficiently large choice of an auxillary parameter
k, we will produce for each l a path of Kahler metrics ωk,l(s(t)) (compatible with the holomorphic
structure Js(t) where s = t · r/k) such that

∂g̃∗s(t)(ωk,l(s(t)))
∂t

+ i∂̄∂Scal
(
g̃∗s(t)(ωk,l(s(t)))

)
= O(k−(l+1)).

More specifically, we will prove the following theorem.
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Theorem 5.1. Let (E, h) → (Σ, ωΣ) be an Hermitian vector bundle over a Riemann surface,
equipped with a constant scalar curvature metric. Fix a smooth connection A = A0 which is the
Chern connection (∂E , h) for holomorphic structure giving rise to holomorphic vector bundle E = E0.
We assume that this holomorphic structure is simple, and has the property that the associated graded
object of its Harder-Narasimhan filtration contains only stable factors.

Fix k >> 0. For each l ≥ 1, and for any fixed number S ∈ [0,∞), there is a path ηSs ∈ su(E), and
paths of Kähler potentials Θk,m(t) ∈ π∗C∞(Σ), Ξk,m(ηSs ) ∈ C∞ (P(E)), and Ωk,m(t) ∈ C∞h (P(E))⊥,
on P(E), and smooth, functions Θk,m,∞, Ξk,m,∞, and Ωk,m,∞ such that for each k and l and every
1 ≤ m ≤ l, and all p, q, and ε, the following hold

• The paths of functions Θk,m(t), Ξk,m(ηSs ), and Ωk,m(t) converge to Θk,m,∞, Ξk,m,∞, and
Ωk,l,∞ respectively in C∞(X) as t→∞. Furthermore, if we define

(5.1) ωSk,l(s(t))

= ω(h, Js) + kπ∗ωΣ + i∂̄Js∂Js

(
l−1∑
m=1

k−m+1Θm(t) +
l−1∑
m=1

k−mΞk,m(ηSs ) +
l−1∑
m=1

k−(m+1)Ωm(t)
)
,

where s = t · r/k, then ωk,l(t) converges smoothly to a Kähler metric

(5.2) ωk,l,∞

= ω(h, J∞) + kπ∗ωΣ + i∂̄J∞∂J∞

(
l−1∑
m=1

k−m+1Θk,m,∞ +
l−1∑
m=1

k−mΞk,m,∞ +
l−1∑
m=1

k−(m+1)Ωk,m,∞

)
,

where J∞ is the holomorphic structure corresponding to the manifold P(E∞) = P(GrE),
arising from the limit of the Yang-Mills flow.
• Writing ωk,l(s(t)) for ωSk,l(s(t)), for each l there exists a path H(ωk,l(s)) of smooth functions
such that if Vs is the time dependent infinitesimal generator associated to g̃s, for all s ∈
[0, S]

(5.3) rk−1
(
∂ωk,l(s)
∂s

+ LVsωk,l(s)
)

= i∂̄Js∂JsH(ωk,l(s)).

• Moreover,

Scal (ωk,l(s(t))) +H(ωk,l(s(t)))

= Scal
(
ωFS(Pr−1)

)
+ k−1 (Scal (ωΣ))(5.4)

+
∑

M=l+1
k−M (Ψ(l)

Σ,M (s) + Ψ(l)
Φh,M (s) + Ψ(l)

⊥,l(s))

= O(k−(l+1)),

so that in particular

i∂Js∂Js (Scal (ωk,l (s)) +H (ωk,l(s))) = O
(
k−(l+1)

)
.

• There is a smooth function H(ωk,l,∞) such that

(5.5) H(ωk,l(s))
C∞→ H(ωk,l,∞)

and we also have
Scal(ωk,l(s(t)))

C∞→ Scal(ωk,l,∞)
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so that in particular

Scal (ωk,l,∞) +H(ωk,l,∞) = Scal
(
ωFS(Pr−1)

)
+ k−1 (Scal (ωΣ))

+
∑

M=l+1
k−M (Ψ(l)

Σ,M,∞ + Ψ(l)
Φh,M,∞ + Ψ(l)

⊥,l,∞(s))(5.6)

= O(k−(l+1)),

and

(5.7) i∂J∞∂J∞ (Scal (ωk,l,∞) +H (ωk,l,∞)) = O
(
k−(l+1)

)
.

• The path of Kähler metrics ω̂k,l(s(t)) = g∗s (ωk,l(s(t))) on the fixed complex manifold P(E)
formally solves solves

(5.8) ∂ω̂k,l(s(t))
∂t

+ i∂̄J∂JScal (ω̂k,l(s(t))) = O(k−(l+1)),

for s ∈ [0, S].
• Finally there are estimates of the form

∥∥∥Ψ(l)
Σ,M (s)−Ψ(l)

Σ,M,∞

∥∥∥
W4,p,q,wε(s)(gk,1,∞)

= O(k1/2)∥∥∥Ψ(l)
Φh,M (s)−Ψ(l)

Φh,M,∞

∥∥∥
W4,p,q,wε(s)(gk,1,∞)

= O(k1/2)(5.9) ∥∥∥Ψ(l)
⊥,M (s))−Ψ(l)

⊥,M,∞

∥∥∥
W4,p,q,wε(s)(gk,1,∞)

= O(k1/2),

for all M ≥ l + 1, so that in particular

(5.10) ‖Scal(ωk,l(s)) +H(ωk,l(s))− (Scal(ωk,l,∞) +H(ωk,l,∞))‖W4,p,q,wε(s)(gk,1,∞) ≤ Ck
−(l+1/2)

for all p, q, and ε.
• In fact, the same estimate is true using the metric gk,l,∞ instead of gk,1,∞, that is:

‖Scal (ωk,l(s(t))) +H(ωk,l(s(t))− (Scal (ωk,l,∞) +H(ωk,l,∞))‖W4,p,q,wε(s)(gk,l,∞)(5.11)

= O(k−(l+1/2),

for all l.

Remark 5.2. The parameter S appears in the above theorem because at a certain point in the
proof we will have to introduce a cutoff function supported in the interval [0, 2S], where the choice
of S is arbitrary. The theorem gives an entire one parameter family of paths of metrics ωSk,l(s(t)),
with each choice of S giving a different path. Mostly however, we will omit the S superscript, unless
it is absolutely necessary.

5.2. The scalar curvature expansion and the approximation to second order. The proof
of Theorem 5.1 will be by induction on l. The sequence of lemmas in this subsection will give the
result for l = 1. Our ansatz for the metrics in Theorem 5.1 will be given by the family of two forms
on P(E) associated to the path of connections As at time s = t ·r/k. Below we will sometimes write
one parameter families of objects on P(E) as being functions of the variable s(t) to emphasise the
fact that they are functions of t and k. Define

(5.12) ωk,1(s(t)) = ω(h, Js) + kωΣ
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and

ω̂k,1 (s(t))
= g̃∗s (ωk,1(s)) = ω(hs, J) + kωΣ.(5.13)

We will begin with a general lemma that holds for any path of connections with uniformly
bounded Hermitian-Einstein tensor.

Lemma 5.3. For any path At of connections on E (that is, ||ΛωΣFAt ||L∞ ≤ C), so that the
associated two forms

ωk(h, Jt) = ω(h, Jt) + kωΣ

are Kähler, the scalar curvature satisfies the following pointwise expansion in powers of k−1:

Scal(ωk(h, Jt))

= Scal
(
ωFS(Pr−1)

)
+ k−1(−2rΦh(ΛωΣF

◦
At) + Scal(ωΣ))(5.14)

+
∑
l=2

k−l(ΨΣ,l(t) + ΨΦh,l(t) + Ψ⊥,l(t)),

where ΛωΣF
◦
At

is the trace-free part

ΛωΣF
◦
At = ΛωΣFAt −

tr (ΛωΣFAt)
r

IdE

of the contracted curvature, and where

ΨΣ,l(t) + ΨΦh,l(t) + Ψ⊥,l(t) ∈ π∗C∞(Σ)⊕ Φh(su(E))⊕ C∞(P(E))⊥,

so that if we set

(5.15) H (ωk (h, Jt)) = 2r
k

(
Φh

(
ΛωΣF

◦
At

))
,

then in particular

(5.16) i∂Jt∂Jt (Scal (ωk(h, Jt)) +H (ωk(h, Jt))) = O
(
k−2

)
.

Similarly, if At converges smoothly to a limit A∞ giving rise to a (unique) limiting holomorphic
structure J∞, then for the limiting metric

ωk(h, J∞) = ω(h, J∞) + kωΣ

there is an expansion of the form

Scal(ωk(h, J∞))

= Scal
(
ωFS(Pr−1)

)
+ k−1(−2rΦh(ΛωΣF

◦
A∞) + Scal(ωΣ))(5.17)

+
∑
l=2

k−l(ΨΣ,l,∞ + ΨΦh,l,∞ + Ψ⊥,l,∞)

so that if we set

(5.18) H (ωk (h, J∞)) = 2r
k

(
Φh

(
ΛωΣF

◦
A∞

))
i∂J∞∂J∞ (Scal (ωk (h, J∞)) +H (ωk (h, J∞))) = O

(
k−2

)
.
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Proof. In order to calculate the scalar curvature, we will first calculate their Ricci forms and then
take a trace. Recall from Section 2.1 that the hermitian metrics gk,1(t) = gk(h, Jt) ∈ Γ

(
T ∗P(Et)⊗ T ∗P(Et)

)
(associated with the Kähler forms ωk,1(t) = ωk(h, Jt)) on P(Et) induce the Hermitian metric
(ωk,1(t))r

r! ∈ Γ(KP(Et) ⊗ KP(Et)) on K∗P(Et) = det(TP(Et)). Moreover, and the Ricci curvatures

Ric(ωk,1(t)) are given by iFK∗P(Et)
((ωk,1(t))r

r! ), the curvature of this induced metric on the anti-
canonical bundle.

By definition

ωk,1(t) = ωFS(h, Jt) + (Φ∗h(−ΛωΣFAt) + k)ωΣ.

Since ωFS(h, Jt) and (Φh(−ΛωΣFAt) + k)ωΣ are positive definite on Vt and Ht respectively, they
define Hermitian metrics on these bundles, and therefore the forms

(ωFS(h, Jt))r−1

(r − 1)! ∈ Γ(detV∗t ⊗ detV∗t ) and (Φh(−ΛωΣFAt) + k)ωΣ ∈ Γ(H∗t ⊗H
∗
t )

are the induced Hermitian metrics on Λr−1
C Vt = det(Vt) and det(Ht) = Ht . We may decompose the

curvature iFK∗P(Et)
((ωk,1(t))r

r! ) into the curvatures iFdet(Vt)(
(ωFS(h,J)(t))r−1

(r−1)! ) and iFHt((Φh(−ΛωΣFA) + k)ωΣ),
of these induced metrics.

Namely, from the exact sequence

0 −→ Vt −→ TP(Et) −→ Ht −→ 0,

and the decomposition of ωk,1(t) there is a smooth, metric splitting

(TP(Et), ωk,1(t)) = (Vt, rωFS(h, Jt))⊕ (Ht, (Φh(−ΛωΣFAt) + k)ωΣ)

and taking determinants this gives an isometric isomorphism(
K∗P(Et),

(ωk (h, Jt))r

r!

)
'
(
detVt,

(ωFS(h, Jt))r−1

(r − 1)!

)
⊗ (Ht, (Φh(−ΛωΣFAt) + k)ωΣ)

since Ht is a line bundle. Therefore

ρk(ωk,1(t)) = iFK∗P(Et)
= i∂̄Jt∂Jt log

(((Φ∗h(−ΛωΣFAt) + k)ωΣ + ωFS(h, Jt))r

r!

)
= i∂̄Jt∂Jt log

(
(Φ∗h(−ΛωΣFAt) + k)ωΣ ⊗

(ωFS(h, Jt))r−1

(r − 1)

)

= i∂̄Jt∂Jt log

(
(ωFS(h, Jt))r−1

(r − 1)

)
+ i∂̄Jt∂Jt log ((Φh(−ΛωΣFAt) + k)ωΣ)

= iFdet(Vt)

(
(ωFS(h, J)(t))r−1

(r − 1)!

)
+ iFHt ((Φh(−ΛωΣFA) + k)ωΣ)

To calculate iFdet(Vt)(
(ωFS(h,J)(t))r−1

(r−1)! ), consider the Euler exact sequence

0 −→ C −→ (Et)x ⊗OP((Et)x)(1) −→ TP((Et)x) −→ 0

which globalises to give an exact sequence

0→ C→ π∗Et ⊗OP(Et)(1)→ Vt → 0

over P (Et). Then this gives an isomorphism

detVt ∼= det E ⊗ (OP(Et)(1))⊗r.
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Under this isomorphism the metric (ωFS(h,J)(t))r−1

(r−1)! corresponds to the tensor product of deth, with
the metric induced by h (through its dual) on OP(Et)(1). Therefore

iFdetVt = riFhLt = rω(h, Jt) + iF(deth,det Et)

= rωFS(h, Jt) + rΦh(−ΛωΣFAt)ωΣ + itr(FAt)

We may also think of ωΣ as giving a different metric on Ht whose curvature is exactly ρΣ, so we
have that

iFHt − ρΣ = i∂̄Jt∂Jt log

((Φh(−ΛωΣFAt) + k)ωΣ
ωΣ

)
= i∂̄Jt∂Jt log

(
1 + k−1 (Φ∗h(−ΛωΣFAt))

)
.

Therefore we obtain

ρk(ωk,1(t)) = iFVt⊗Ht = iFdetVt,h + iFHt,h

= rωFS(h, Jt) + rΦh(−ΛωΣFAt)ωΣ + itr(FAt) + ρΣ

+i∂̄Jt∂Jt log
(
1 + k−1 (Φh(−ΛωΣFAt))

)
= rωFS(h, Jt) + rΦh(−ΛωΣFAt)ωΣ + itr(FAt) + ρΣ(5.19)

+
∞∑
j=0

(−1)jk−(j+1)i∂̄Jt∂Jt

(
(Φh(−ΛωΣFAt))

j+1
)
,

where we have used in the last line that log(1 + x) =
∞∑
j=1

(−1)j+1 xj
j for |x| < 1 (note that k >> 0).

Now the scalar curvature of ωk,1(t) is by definition Scal(ωk(h, Jt)) = Λωk,1(t)(ρk(ωk,1(t))). For
γ ∈ Λ2(V ∗) and β ∈ H∗ define the vertical and horizontal traces by

ΛωFS(h,Jt)(γ) = (r − 1) γ ∧ (ωFS(h, Jt))r−2

(ωFS(h, Jt))r−1 and ΛωΣ(β) = β

ωΣ

where the above are to be thought of as quotients in the determinant lines of V ∗ and H∗. Let
πV V : Ω2(P(E)) → Λ2V ∗ and πHH : Ω2(P(E)) → H∗ be the projections onto the respective
summands, where we are using the C∞ splitting Ω2(P(E)) = Λ2V ∗ ⊕ (V ∗ ⊗ H∗) ⊕ Λ2H∗. Let
α ∈ Ω2(P(E)).

By definition we have:

Λωk,1(t)(α) = r
α ∧ (ωk,1(t))r−1

(ωk,1(t))r

= r
(πV V (α) + πHH(α)) ∧ ((ωFS(h, Jt)) + (Φh(−ΛωΣFAt) + k)ωΣ))r−1

(ωFS(h, Jt) + (Φh(−ΛωΣFAt) + k)ωΣ)r

= (r − 1)(πV V (α)) ∧ (ωFS(h, Jt))r−2 ∧ ((Φh(−ΛωΣFAt) + k)ωΣ)
(ωFS(h, Jt))r−1 ∧ ((Φh(−ΛωΣFAt) + k)ωΣ)

+ πHH(α) ∧ (rωFS(h, Jt))r−1

((Φh(−ΛωΣFAt) + k)ωΣ) ∧ (ωFS(h, Jt))r−1

= (r − 1)πV V (α) ∧ (rωFS(h, Jt))r−2

(ωFS(h, Jt))r−1 + πHH(α)
((Φh(−ΛωΣFAt) + k)ωΣ)

= ΛωFS(h,Jt)(πV V (α)) + πHH(α)
kωΣ

(Φh(−ΛωΣFAt )
k + 1

)(5.20)
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= ΛωFS(h,Jt)(πV V (α)) + k−1ΛωΣ(πHH(α)) 1(Φ∗
h

(−ΛωΣFAt )
k + 1

)
= ΛωFS(h,Jt)(πV V (α)) + k−1ΛωΣ(πHH(α))

+
∞∑
l=1

(−1)lk−(l+1)ΛωΣ(πHH(α)) (Φ∗h(−ΛωΣFAt))
l

where in the last line we have used the Taylor expansion of 1/1 + x.
Applying this to ρk(ωk,1(t)) we therefore obtain

Scal(ωk,1(t)) = Λωk,1(t)(ρk(ωk,1(t)))

= ΛωFS(h,Jt)(πVV(ρk(ωk,1(t)))) + k−1ΛωΣ(πHH(ρk(ωk,1(t))))

+
∞∑
l=1

(−1)lk−(l+1)ΛωΣ(πH(ρk(ωk,1(t))) (Φh(−ΛωΣFAt))
l

= Scal
(
ωFS(Pr−1)

)
(5.21)

+k−1 (Scal(ωΣ)− rΦh(ΛωΣFAt) + ∆Vt (Φh(−ΛωΣFAt)) + itr(ΛωΣFAt))

−
∞∑
j=1

k−(j+1)∆Vt
(
(Φh(ΛωΣFAt))

j+1
)

+
∞∑
l=1

k−(l+1) (Scal(ωΣ)− rΦh(ΛωΣFAt) + itr(ΛωΣFAt)) (Φh(ΛωΣFAt))
l

−
∞∑
l=0

 ∞∑
j=0

k−(j+l+2)∆Ht
(
(Φh(ΛωΣFAt))

j+1
) (Φh(ΛωΣFAt))

l .

Now we have by Lemma 4.11

−rΦh(ΛωΣFAt)−∆VtΦh(ΛωΣFAt) + itr(ΛωΣFAt)

= −rΦh(ΛωΣF
◦
At + tr (ΛωΣFAt)

r
IdE)−∆Vt

(
Φh(ΛωΣF

◦
At + tr (ΛωΣFAt)

r
IdE)

)
+ itr(ΛωΣFAt)

= −2rΦh(ΛωΣF
◦
At)− itr (ΛωΣFAt) + itr(ΛωΣFAt) = −2rΦh(ΛωΣF

◦
At),

since itr (ΛωΣFAt) is pulled back from Σ, and therefore annhilated by ∆Vt . We therefore obtain
5.14. Precisely the same calculation holds for the fixed holomorphic structure J∞ which gives the
expansion for Scal(ωk(h, J∞)). �

The following lemma shows that if we choose our path of connections to satisfy Yang-Mills flow
at the appropriate speed, as discussed at the beginning of this subsection, the resulting path of
metrics actually gives a solution to Calabi flow on P(E) up to the diffeomorphisms g̃s and up to
second order in powers of k−1.

Lemma 5.4. Let As satisfy the Yang-Mills flow at time s = t · r/k, inducing Kähler metrics
ωk,1(s) = ωk(h, Js) and ω̂k,1(s) = g̃∗s(ωk,1(s)). If H(ωk,1(s)) is as defined in Lemma 5.3, then there
is an equality

(5.22) rk−1
(
∂ωk,1(s)
∂s

+ LVsωk,1(s)
)

= i∂̄Js∂Js

(2r
k

Φh(FAs)
)

= i∂Js∂JsH(ωk,1(s))

where Vs is the time dependent infinitesimal generator associated to g̃s. This implies

(5.23) ∂ω̂k,1(s)
∂t

= i∂J∂JH (ω̂k,1(s))
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and in particular
∂ω̂k,1(s)
∂t

+ i∂J∂JScal(ω̂k,1(s)) = O(k−2).

We also have

i∂J∞∂J∞ (Scal (ωk,1,∞) +H(ωk,1,∞))

= i∂J∞∂J∞

(
Scal (ωk,1,∞) + 2r

k
Φh (ΛωΣFA∞)

)
= O

(
k−2

)
.(5.24)

Proof. Let gs be the complex gauge transformation associated to a solution As of Yang-Mills flow,
and Vs be the time dependent infinitesimal generator associated to g̃s, namely the one parameter
family of vector fields given by

Vs = d(̃gw ◦ g̃−1
s )

dw
|w=s

of g̃∗s . By Lemma 4.9we have

2i∂̄J∂J (Φh(Fhs)) =
∂iF(hs,L)

∂s
= ∂ω(hs, J)

∂s
= ∂ωk(hs, J)

∂s
= ∂g̃∗s(ωk,1(h, Js))

∂s
.

We also have that
∂g̃∗s(ωk,1(s))

∂s
= g̃∗s

(
∂ωk,1(s)
∂s

+ LVsωk,1(s)
)
,

and therefore

2rk−1(i∂̄Js∂Js(Φh(ΛωΣFAs))) = 2rk−1(g̃−1
s )∗(i∂̄J∂J(Φhs(ΛωΣFhs))

= rk−1(∂ωk,1(s)
∂s

+ LVsωk,1(s)),

which is equation 5.22. In the same way, we have
∂ω̂k,1(s)
∂t

= rk−1∂ω̂k,1(s)
∂s

= g̃∗s

(
i∂Js∂JsH (ωk,1(s))

)
= i∂J∂JH (ω̂k,1(s)) .

which is equation 5.23.
Recall that there is an action of each gs on the space of Hermitian metrics given by equation , so

that the family of metrics gs · h = hs solves Hermitian-Yang-Mills flow. Then applying Lemma 5.3
to the Yang-Mills flow and pulling back by the diffeomorphisms induced by gs and using equation
4.17 and more generally, Lemma 4.12 gives

Scal(ω̂k,1(s)) = Scal(g̃∗s(ωk,1(s)) = g̃∗s(Scal((ωk,1(s))

= g̃∗s(Scal
(
ωFS(Pr−1)

)
+ k−1(−2rΦh(ΛωΣFAs) + Scal(ωΣ))

+
∑
l=2

k−lg̃∗s(ΨΣ,l(s) + ΨΦh,l(s) + Ψ⊥,l(s))

= Scal
(
ωFS(Pr−1)

)
+ k−1(−2rΦhs(ΛωΣFhs) + Scal(ωΣ))

+
∑
l=2

k−l((ΨΣ,l(s) + ΨΦhs ,l(s) + Ψ⊥,l(s)).

Therefore, by equation 5.23, we get

i∂̄J∂JScal(ω̂k,1 (s(t)))



LONG-TIME EXISTENCE FOR THE CALABI FLOW ON RULED MANIFOLDS 59

= −∂ω̂k,1(s)
∂t

+
∑
l=2

k−l((ΨΣ,l(s) + ΨΦhs ,l(s) + Ψ⊥,l(s)),

and so
∂

∂t
(ω̂k,1 (s(t))) + i∂̄J∂JScal(ω̂k,1 (s(t)))

=
∑
l=2

k−l((ΨΣ,l(s) + ΨΦhs ,l(s) + Ψ⊥,l(s))

= O(k−2).

The last statement is exactly the same as the last statement of Lemma 5.3. �

We now claim that each of these functions is in an appropriate parabolic Sobolev space with
respect to the Kähler metric ωk,1,∞ on P(E∞) defined in Section 4.5. The following lemma and its
corollary will be of crucial importance in the sequel.

Lemma 5.5. For each k and each l ≥ 2, the functions ΨΣ,l(s),ΨΦh,l(s),Ψ⊥,l(s) appearing in
the expansion of the scalar curvature of the Kähler metric ωk(h, Js), converge in C∞(P(E)) to
smooth functions ΨΣ,l,∞,ΨΦh,l,∞,Ψ⊥,l,∞ on P(E) and for each p, q and ε, we have that the func-
tions ΨΣ,l(s) − ΨΣ,l,∞, ΨΦh,l,∞(s) − ΨΦh,l,∞, and Ψ⊥,l(s) − Ψ⊥,l,∞ lie in the parabolic spaces
W4,p,q,wε(s)(gk,l,∞) for all p, q, and ε and more precisely

||ΨΣ,l(s)−ΨΣ,l,∞||W4,p,q,wε(s)(gk,1,∞) = O(k1/2),

||ΨΦh,l,∞(s)−ΨΦh,l,∞||W4,p,q,wε(s)(gk,∞) = O(k1/2),(5.25)

||Ψ⊥,l(s)−Ψ⊥,l,∞||W4,p,q,wε(s)(gk,l,∞) = O(k1/2).

Proof. The precise expression for the scalar curvature equation 5.21 gives that for each l ≥ 2

Ψl(s) = ΨΣ,l(s) + ΨΦh,l(s) + Ψ⊥,l(s)
= −(∆Vs((Φh(ΛωΣFAs))l) + (Scal(ωΣ)− rΦh(ΛωΣFAs) + itr(ΛωΣFAt))(Φh(ΛωΣFAs))l−1

−
∑
m,j

m+j+2=l

∆Hs((Φh(ΛωΣFAs)j+1)(Φh(ΛωΣFAs))m.

We have by Lemma 4.17 that ∆Vs → ∆V∞ and ∆Ht → ∆H∞ ( in the operator norm induced by the
Cp norm for each p) at a rate of 1√

s
, and by Lemma 4.15, Φh(−ΛωΣFAs) converges (and is therefore

also bounded) in the C∞ topology, at the same rate. On the other hand for the case i = 0, for any
p ≥ 0 ∥∥∥∆Vs((Φh(ΛωΣFAs))l)−∆V∞((Φh(ΛωΣFA∞))l)

∥∥∥
Cp

=
∥∥∥(∆Vs −∆V∞)((Φh(ΛωΣFAs))l) + ∆V∞((Φh(ΛωΣFAs))l − (Φh(ΛωΣFA∞))l)

∥∥∥
Cp

≤
∥∥∥∆Vs −∆V∞ || · ||(Φh(ΛωΣFAs))l||Cβ + ||∆V∞ || · ||Φh(ΛωΣFAs))l − (Φh(ΛωΣFA∞))l)

∥∥∥
Cp

≤ C||∆Vs −∆V∞ ||+ C(||Φh(ΛωΣFAs)− (Φh(ΛωΣFA∞))||Cp
×||(Φh(ΛωΣFAs))l−1 + · · ·+ (Φh(ΛωΣFA∞))l−1||Cp)

≤ C√
s
,
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for s sufficiently large, where we have used the fact that the Cp norm of a product of two functions
is bounded by a constant times the product of the Cs norms, and Lemmas 4.15 and 4.17 again.
Similarly we obtain∥∥∥∆Hs((Φh(ΛωΣFAs)j+1)(Φh(ΛωΣFAs))m −∆H∞((Φh(ΛωΣFA∞)j+1)(Φh(ΛωΣFA∞))

∥∥∥
Cp

= ||(∆Hs −∆H∞)((Φh(ΛωΣFAs)j+1)(Φh(ΛωΣFAs))m||Cp
+||∆H∞((Φh(ΛωΣFAs)j+1)(Φh(ΛωΣFAs))m −∆H∞(Φh(ΛωΣFA∞)j+1)(Φh(ΛωΣFA∞))m||Cp

≤ C||∆Hs −∆H∞ ||+ (||Φh(ΛωΣFAs)− Φh(ΛωΣFA∞)||Cp
×||∆H∞((Φh(ΛωΣFAs)j+1)(Φh(ΛωΣFAs))m−1 + · · ·+ ∆H∞(Φh(ΛωΣFA∞)j+1)(Φh(ΛωΣFA∞))m−1||Cp)

≤ C||∆Hs −∆H∞ ||+ C||Φh(ΛωΣFAs)− Φh(ΛωΣFA∞)||Cp

≤ C√
s
,

for s sufficiently large. Therefore setting ΨΣ,l,∞,ΨΦh,l,∞,Ψ⊥,l,∞ equal to the the images under the
projection maps (defined by the decomposition of C∞(P(E))) of the function

−(∆V∞((Φh(ΛωΣFA∞))l) + (Scal(ωΣ)− rΦh(ΛωΣFA∞) + itr(ΛωΣFA∞))((Φh(ΛωΣFA∞))l−1

−
∑
i,j

i+j+2=l

∆H∞((Φh(ΛωΣFA∞)j+1)(Φh(ΛωΣFA∞))m,

and applying lemma 4.13 we have ΨΣ,l(s),ΨΦh,l(s),Ψ⊥,l(s) → ΨΣ,l,∞,ΨΦh,l,∞,Ψ⊥,l,∞ in C∞ at a
rate of 1√

s
.

For any i ≥ 1∥∥∥∂is(∆Vs)∥∥∥
Cp
,
∥∥∥∂is(∆Ht)∥∥∥

Cp
,
∥∥∥∂is(Φh(ΛωΣFAs))

∥∥∥
Cp

=
∥∥∥Φh(∂isΛωΣFAs)

∥∥∥
Cp
≤ C√

s

for all p and and all s sufficiently large, where we again use Lemmas 4.15 and 4.17, and the fact
that Φh is independent of t, and where

∥∥∂is(∆Vs)∥∥Cp , ∥∥∂is(∆Vs)∥∥Cp are the operator norms induced
by the Cβ norms. All these quantities are in particular bounded, so that for i ≥ 1 we have∥∥∥∂is(Ψl(s))

∥∥∥
Cp
≤ C

(
i∑

α=1
‖∂αt (∆Vs)‖Cp + ‖∂αs (∆Hs)‖Cp + ‖Φh(∂αs ΛωΣFAs)‖Cp

)
≤ C√

s
,

and in particular ∂is(Ψl(s))→ 0 in C∞.
Now comparing the Cp norms with the Sobolev norms, we have in particular that for every i ≥ 1

and s ≥ 0 ∥∥∥∂is(Ψl(s))
∥∥∥
L2
p(gk,1,∞)

≤ (vol(P(E), gk,1,∞))1/2
∥∥∥∂is(Ψl(s))

∥∥∥
Cp(gk,1,∞)

‖Ψl(s)−Ψl,∞‖L2
p(gk,1,∞) ≤ (vol(P(E), gk,1,∞))1/2 ‖Ψl(s)−Ψl,∞‖Cp(gk,1,∞) .

Now we can argue just as in [F], using Theorem 5.2 of that reference to prove that the volume
form on a sufficiently small ball B around any point p ∈ Σ is equal to O(k) times a fixed form,
and therefore vol(B, gk,1,∞) = O(k). Covering Σ by balls of this type and summing up the volumes
therefore gives vol(P(E), gk,1,∞) = O(k). Notice also that

πΣ∗(∂is(Ψl(s)) = ∂is(πΣ∗Ψl(s)) = ∂isΨΣ,l(s)
πΦh∗(∂

i
s(Ψl(s)) = ∂is(πΦh∗Ψl(s)) = ∂isΨΦh,l(s)

π⊥∗(∂is(Ψl(s)) = ∂is(ππ⊥∗Ψl(s)) = ∂isΨ⊥,l(s),



LONG-TIME EXISTENCE FOR THE CALABI FLOW ON RULED MANIFOLDS 61

since ∂is commutes with pullback and with Φh. Therefore, by Lemma 4.13 we obtain that for each
i ≥ 1 ∥∥∥∂isΨΣ,l(s)

∥∥∥
L2
p(gk,1,∞)

,
∥∥∥∂isΨΦh,l(s)

∥∥∥
L2
p(gk,1,∞)

,
∥∥∥∂isΨπ⊥∗,l(s)

∥∥∥
L2
p(gk,1,∞)

≤ O(k1/2)
s

‖ΨΣ,l −ΨΣ,l,∞‖L2
p(gk,1,∞), ‖ΨΦh,l −ΨΦh,l,∞‖L2

p(gk,1,∞), ‖Ψ⊥,l(s)−Ψ⊥,l,∞‖L2
p(gk,1,∞), ≤

O(k1/2)
s

.

We then obtain for the parabolic Sobolev norms

‖ΨΣ,l(s)−ΨΣ,l,∞‖2W4,p,q,wε(s)(gk,1,∞) =
q∑
i=0

� ∞
0
|wε(s)|2

∥∥∥∂it (ΨΣ,l(s)−ΨΣ,l,∞)
∥∥∥2

L2
4(p−i)(gk,1,∞)

=
� ∞

0
|wε(s)|2 ‖ΨΣ,l(s)−ΨΣ,l,∞‖2L2

4p(gk,1,∞)

+
q∑
i=1

� ∞
0
|wε(s)|2

∥∥∥∂itΨΣ,l(s)
∥∥∥2

L2
4(p−i)(gk,1,∞)

≤ O(k)
� ∞

0

|wε(s)|2

s
= O(k),

by the definition of the weight function. The other parabolic norms are computed in exactly the
same way. �

Combining the previous two lemmas, we obtain the crucial fact that our ansatz is close to a
solution of (after pulling back by the diffeomorphism induced by gs) to Calabi flow with respect to
the parabolic Sobolev norms.

Corollary 5.6. Let As satisfy the Yang-Mills flow at time s = 2r/k · t, and ωk,1(s) = ωk(h, Js) be
the resulting family of Kähler forms on P(Es), so that ω̂k,1(s) = g̃∗s(ωk,1(s)) is a family of Kähler
forms on the fixed complex manifold P(E). Then for all p,q, and ε there is an estimate:∥∥∥∥Scal(ωk,1(s)) + 2r

k
Φh(ΛωΣF

◦
As)− (Scal(ωk,1,∞) + (2r

k
Φh(ΛωΣF

◦
A∞))

∥∥∥∥
W4,p,q,wε(s)(gk,1,∞)

≤ Ck−3/2.

Proof. By Lemma 5.4 we have a pointwise expansion

Scal(ωk,l(s)) + 2r
k

Φh(ΛωΣF
◦
As)− (Scal(ωk,l,∞) + 2r

k
Φh(ΛωΣF

◦
A∞))

=
∑
l=2

k−l((ΨΣ,l(t)−ΨΣ,l,∞) + (ΨΦh,l(t)−ΨΦh,l,∞) + (Ψ⊥,l(t)−Ψ⊥,l,∞).

By the previous Lemma we obtain the result.
�

Applying Lemmas 5.4 and 5.5 and Corollary 5.6 gives Theorem 5.1 for l = 1.

5.3. The Second order correction. In this subsection we will prove Theorem 5.1 in the case l =
2. This is the main step in the induction. More specifically we will prove the following proposition.

Proposition 5.7. Fix any S ∈ [0,∞]. There is a path ηSs ∈ su(E), and one parameter families
of Kähler potentials Θ(s(t)) ∈ π∗C∞(Σ), Ξ(ηSs ) ∈ C∞(P(E)), Ω(s(t)) ∈ C∞(P(E))⊥ converging
smoothly to functions Θ∞,Ξ∞, Ω∞ so that the path of Kähler forms

(5.26) ωk,2(s) = ωk,1(s) + i∂Js∂JsΘ(s(t)) + k−1i∂Js∂JsΞ((s(t)) + k−2i∂Js∂JsΩ(s(t))
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compatible with the holomorphic structure Js converges to a form ωk,2,∞ (with corresponding metric
gk,2,∞) compatible with J∞.

Moreover, there exists a one parameter family of functions H(ωk,2(s)), converging to a function
H(ωk,2,∞) such that the following properties hold.

Pointwise there is an equation:

Scal(ωk,2(s)) +H(ωk,2(s))− (Scal(ωk,2,∞) +H(ωk,2,∞))

=
∑
l=3

k−l(Ψ(2)
Σ,l(s)−Ψ(2)

Σ,l,∞) + (Ψ(2)
Φh,l(s)−Ψ(2)

Φh,l,∞) + (Ψ(2)
⊥,l(s)−Ψ(2)

⊥,l,∞)),(5.27)

where Ψ(2)
Σ,l(s),Ψ

(2)
Φh,l(s), and Ψ(2)

⊥,l(s) are smooth families of functions (each belonging to the respect-
ive summand of C∞(P(E))) converging in C∞(P(E)) to the smooth functions Ψ(2)

Σ,l,∞,Ψ
(2)
Φh,l,∞,Ψ

(2)
⊥,l,∞.

We furthermore have an equality

(5.28) rk−1
(
∂ωk,2(s)
∂s

+ LVsωk,2(s)
)

= i∂̄Js∂JsH(ωk,2(s)),

which implies in particular that
∂ω̂k,2(s)
∂t

= i∂̄J∂JH(ω̂k,2(s)),

for all s ∈ [0, S].
Equivalently we obtain a formal solution

(5.29) ∂ω̂k,2(s)
∂t

+ i∂J∂JScal(ω̂k,2(s)) = O(k−3)

to Calabi flow on P(E) to order 3 in k−1, for all s ∈ [0, S].
Finally, for all p, q and ε we have

||Ψ(2)
Σ,l(s)−Ψ(2)

Σ,l,∞||
2
W4,p,q,wε(s)(gk,1,∞) = O(k1/2),

||Ψ(2)
Φh,l(s)−Ψ(2)

Φh,l,∞||
2
W4,p,q,wε(s)(gk,1,∞) = O(k1/2),(5.30)

||Ψ(2)
⊥,l(s)−Ψ(2)

⊥,l,∞||
2
W4,p,q,wε(s)(gk,1,∞) = O(k1/2).

which implies an estimate

(5.31) ‖Scal(ωk,2(s)) +H(ωk,2(s))− (Scal(ωk,2,∞) +H(ωk,2,∞))‖W4,p,q,wε(s)(gk,1,∞) ≤ Ck
−(5/2).

The remainder of this subsection will consist of the proof of 5.7. From the previous subsection
we may write

∂ω̂k,1(s)
∂t

+ i∂J∂JScal(ω̂k,1(s)) = k−2g̃∗s(ΨΣ,2(s) + ΨΦh,2(s) + Ψ⊥,2(s)) +O(k−3).

The goal is to add Kähler potentials to ω̂k,1(s) in order to eliminate the first three terms. We
will handle the terms involving ΨΣ,2(s), ΨΦh,2(s), and Ψ⊥,2(s), in that order, by adding three new
potentials, one for each summand. Each time we add a potential, we first calculate the effect of the
change in the metric this induces on the scalar curvature, and see that in order to eliminate the
relevant term of order 2 in k−1, we must solve a linear parabolic equation of the type discussed in
the appendix. The key point is that when we add each potential, we will only change the right hand
side of the equation above at orders 3 and above in k−1 by terms involving the added potentials.
The parabolic theory, together with the estimates obtained in the last subsection will then allow
us to obtain estimates on the potentials, which will in turn give us estimates on the O(k−3) terms
as well, as in the statement of Proposition 5.7.
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Proof. Step 1: Correcting ΨΣ,2.
We will start by eliminating ΨΣ,2(s(t)). To do so we will modify the metric ωΣ on Σ. Since

ωk,1(t) = ω(h, Js)+kωΣ, modifying ωΣ by adding k−1i∂̄Σ∂ΣΘ(w(t)) for some one parameter family
of functions Θ(w(t)) ∈ C∞(Σ) is the same as modifying ωk,1(t) by adding π∗(i∂̄Σ∂ΣΘ(w(t))). Here
w(t) = t

k2 .
So we obtain a new metric

ω
′
k,1(t) = ω

′
k,1(s(t), w(t))

= ωk,1(s(t)) + π∗(i∂̄Σ∂ΣΘ(w(t))),(5.32)

and to calculate the effect of this change on the scalar curvature we simply replace ωΣ by ω′Σ =
ωΣ + k−1i∂̄Σ∂ΣΘ(w(t))), in the expression 5.21 obtained in the proof of Lemma 5.3 that is:

Scal(ω′k,1(s(t))) = Scal(ωk,1(s(t)) + i∂Σ∂ΣΘ(w)) = Scal(ω(h, Js) + k(ωΣ + k−1i∂Σ∂ΣΘ(w))

= Scal
(
ωFS(Pr−1)

)
+ k−1

(
−2rΦh(ΛωΣ+i∂Js∂JsΘ(w)F

◦
At) + Scal(ωΣ + i∂Js∂JsΘ(w))

)
+
∑
l=2

k−2 (ΨΣ,l(s) + ΨΦh,l(s) + Ψ⊥,l(s))) +O(k−3).(5.33)

Now we compute all the expressions in the above formula, beginning with Scal(ωΣ + k−1i∂Σ∂Σ).
We have

Scal(ωΣ + k−1i∂Σ∂ΣΘ(w)) = ΛωΣ+k−1i∂Σ∂ΣΘ(w)(ρωΣ+k−1i∂Σ∂ΣΘ(w))

=
ρωΣ+k−1i∂Σ∂ΣΘ(w)

ωΣ + k−1i∂Σ∂ΣΘ(w)
=

ΛωΣ(ρωΣ+k−1i∂Σ∂ΣΘ(w))
(1 + k−1∆ΣΘ(w)) .

Below we will define Θ(w) as the solution of a parabolic equation, and in particular it will be
bounded as w → ∞, so that for k sufficiently large we have |k−1∆ΣΘ(w)| < 1. Therefore we have
a pointwise expansion of the form

Scal(ωΣ + k−1i∂Σ∂ΣΘ(w)) = ΛωΣ(ρωΣ+k−1i∂Σ∂ΣΘ(w))
( ∞∑
i=0

(−1)ik−i (∆ωΣΘ(w))i
)
.

We also have

ρωΣ+k−1i∂Σ∂ΣΘ(w) − ρωΣ = i∂Σ∂Σ log(ωΣ + k−1i∂Σ∂ΣΘ(w)
ωΣ

)

= i∂Σ∂Σ log(1 + k−1∆ωΣΘ(w))

= i∂Σ∂Σ

( ∞∑
i=1

(−1)i+1k−i
(∆ωΣΘ(w))i

i

)

Then we obtain

Scal(ωΣ + k−1i∂Σ∂ΣΘ(w)) = ΛωΣ+i∂Σ∂ΣΘ(w)(ρωΣ+i∂Σ∂ΣΘ(w)
)

= ΛωΣ

(
ρωΣ + i∂Σ∂Σ

( ∞∑
i=1

(−1)i+1k−i
(∆ωΣΘ(w))i

i

)) ∞∑
i=0

(−1)ik−i (∆ωΣΘ(w))i

= Scal(ωΣ) + k−1
(
∆2
ωΣΘ(w)− Scal(ωΣ)∆ωΣΘ(w)

)
+O(k−2)

= Scal(ωΣ) + k−1D∗ωΣDωΣΘ(w) +O(k−2),



64 SIBLEY

Where we have used Lemma 2.5, to conclude that(
∆2
ωΣΘ(w)− Scal(ωΣ)∆ωΣΘ(w)

)
= (dScalωΣ)0(Θ(w)) = D∗ωΣDωΣΘ(w).

since Scal(ωΣ) is constant. For the moment the above expression is purely formal, but we will make
it precise in the sequel.

We may also compute

ΛωΣ+k−1i∂̄Σ∂ΣΘ(w)F
◦
As =

F ◦As
ωΣ + k−1i∂̄Σ∂ΣΘ(w)

= ΛωΣF
◦
As

 1
1 + k−1

(
i∂̄Σ∂ΣΘ(w)

ωΣ

)


= ΛωΣF
◦
As − k

−1ΛωΣF
◦
As (∆ωΣΘ(w)) +

∞∑
i=2

k−iΛωΣF
◦
As((∆ωΣΘ(w))i).

Expanding the expression 5.33, we obtain

Scal(ω′k,1(s(t)))

= Scal
(
ωFS(Pr−1)

)
+ k−1 (Scal(ωΣ)− 2r(Φh(ΛωΣF

◦
As)
)

+k−2
(
(D∗ωΣDωΣΘ(w) + 2r(Φh(ΛωΣF

◦
As)∆ωΣΘ(w)

)
+
∑
l=2

k−l(ΨΣ,l(s) + ΨΦh,l(s) + Ψ⊥,l(s)).

Remark 5.8. The two key points here are (1) that we have not changed the k−1 term at all, so
that the new metric will still give an approximation to Calabi flow at order 1, and only slighly
modified the k−2 term by the expression

D∗ωΣDωΣΘ(w)) + 2r∆ωΣΘ(w)Φh(Λ(ωΣF
◦
As),

which will help us kill ΨΣ,2(t), and it is otherwise unchanged; and (2) the new O(k−3) term will
remain in the appropriate parabolic Sobolev space as we shall see below. For the time being, to
lighten the notation, we continue to denote these latter terms by ΨΣ,l(s),ΨΦh,l(s),Ψ⊥,l(s)), even
though stricitly speaking they have been modified. We will modify the notation later, after we have
we have constructed all of the required potentials.

Now we define Θ(w). There is a solution to the elliptic equation

(5.34) D∗ωΣDωΣΘ∞ = −Ψ̂Σ,2,∞,

(where we will abuse notation here and leave out the pullback symbol, and where Ψ̂Σ,2,∞ denotes
the difference with the mean value), since by definition�

Σ
Ψ̂Σ,2,∞ = 0,

and therefore
−Ψ̂Σ,2,∞ ⊥ kerD∗ωΣDωΣ ,

since
kerD∗ωΣDωΣ = R

We take Θ̃(w) to be the solution of the linear parabolic initial value problem

(5.35) ∂Θ̃(w)
∂w

+ D∗ωΣDωΣΘ̃(w) = −(Ψ̂Σ,2(s)− Ψ̂Σ,2,∞),

Θ̃(0) = −Θ∞,
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the longtime existence of which is provided by Theorem 7.10, which we may apply using the facts
that D∗ωΣDωΣ is a semi-defiinite self adjoint operator whose kernel (which again is C) , is orthogonal
to Ψ̂Σ,2(s)− Ψ̂Σ,2,∞ for all s (and so all w) and that by Lemma 5.5 we also have

Ψ̂Σ,2(s)− Ψ̂Σ,2,∞ ∈W4,p,q,wε(s)(gk.1.∞).

Now we define

(5.36) Θ(w) = Θ̃(w) + Θ∞,

which then satisfies the initial value equation

(5.37) ∂Θ(w)
∂w

+ D∗ωΣDωΣΘ(w) = −Ψ̂Σ,2(s).

Θ(0) = 0
We remark here that by the regularity theory for parabolic equations

Θ̃(w) = Θ(w)−Θ∞
is also in the parabolic space W4,p+1,q,wε(s)(gk.1.∞) and satisfies the parabolic estimate

||Θ(w)−Θ∞||W4,p+1,q,wε(s)(gk.1.∞)

≤ C

(
‖Θ∞‖L2

4p+2(gk.1.∞) +
∥∥∥−(Ψ̂Σ,2(s)− Ψ̂Σ,2,∞)

∥∥∥
W4,p,q,wε(s)(gk.1.∞)

)
(5.38)

≤ Ck1/2,

again by Lemma 5.5.
We also define

(5.39) H(ω′k,1(s(t)) = k−1(2rΦh(ΛωΣFAs))− k−2
(
D∗ωΣDωΣΘ(w) + Ψ̂Σ,2(s)

)
.

Then note that one has the analogue of equation 5.28, namely:

i∂J∂J
(
H(ω′k,1(s(t))

)
= k−1(2ri∂J∂J (Φh(ΛωΣFAs)))− k−2i∂J∂J

(
D∗ωΣDωΣΘ(w) + Ψ̂Σ,2(s)

)
= 2rk−1(∂ωk,1(s(t))

∂s
+ LVs(ωk,1(s(t))) + k−2 ∂

∂w

(
i∂Σ∂ΣΘ(w)

)
(5.40)

= 2rk−1
(
∂ωk,1(s(t))

∂s
+ LVs(ωk,1(s(t)) + ∂

∂s

(
i∂Σ∂ΣΘ(w)

))

= 2rk−1
(
∂ω
′
k,1(s(t))
∂s

+ LVs(ω
′
k,1(s(t))

)
,

where we have used the fact that

LVs(i∂Σ∂ΣΘ(w)) = i∂Σ∂Σ (LVs (Θ(w))) = 0,

because

LVs (Θ(w)) = Vs (Θ(w)) = d

dς
(g̃ς ◦ g̃−1

s |ς=s) (Θ(w))

= d

dς
(Θ(w) ◦ g̃ς ◦ g̃−1

s |ς=s) = 0,

since Θ(w) ◦ g̃ς ◦ g̃−1
s is constant, because Θ(w) is constant on the fibres of P(E) and g̃ς ◦ g̃−1

s

preserves the fibres by definition.
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Then formally we obtain

Scal(ω′k,1(s(t))) +H(ω′k,1(s(t))

= Scal
(
ωFS(Pr−1)

)
+ k−1Scal (ωΣ)(5.41)

+ k−2(2r∆ωΣΘ(w)Φh(ΛωΣF
◦
As) + ΨΦh,2(t) + Ψ⊥,2(t))

+
∑
l=3

k−l(ΨΣ,l(s) + ΨΦh,l(s) + Ψ⊥,l(s)),

which by equation 5.40 gives an initial version of equation 5.29, namely the equation:

∂ω̂′k,1(s(t))
∂t

+ i∂J∂JScal(ω̂′k,1(s(t)))

=
∂g̃∗s(ω′k,1(s(t)))

∂t
+ i∂J∂JScal(g̃∗s(ω′k,1(s(t))))

= 2rk−1g̃∗s

(
∂ω
′
k,1(s(t))
∂s

+ LVs(ω
′
k,1(s(t))

)
+ g̃∗s

(
i∂Js∂JsScal(ω′k,1(s(t)))

)
= g̃∗s

(
i∂Js∂Js

(
H(ω′k,1(s(t)) + Scal(ω′k,1(s(t))

))
= k−2i∂J∂J

(
(2r∆ωΣΘ(w)Φhs(Λ(ωΣF

◦
hs) + ΨΦhs ,2(s) + Ψ⊥,2(s))

)
+O(k−3).

Notice that taking Θ∞ as above, and defining

ω
′
k,1,∞ = ωk,1,∞ + i∂Σ∂ΣΘ∞,

and

H(ω′k,1,∞) : = H (ωk,1,∞)
= 2rk−1 (Φh

(
ΛωΣF

◦
A∞

))
,(5.42)

then by the elliptic analogue of exactly the same argument above, we have an expansion

Scal
(
ω
′
k,1,∞

)
+H

(
ω
′
k,1,∞

)
= Scal

(
ωFS(Pr−1)

)
+ k−1Scal (ωΣ)(5.43)

+ k−2(2r∆ωΣΘ(w)Φh(ΛωΣF
◦
A∞) + ΨΦh,2,∞ + Ψ⊥,2,∞)

+
∑
l=3

k−l(ΨΣ,l,∞ + ΨΦh,l,∞ + Ψ⊥,l,∞),

and subtracting equation5.41 from equation 5.43 gives a preliminary version of equation 5.27,
namely:

Scal
(
ω
′
k,1(s(t))

)
+H(ω′k,1(s(t))−

(
Scal

(
ω
′
k,1,∞

)
+H(ω′k,1,∞)

)
= k−2 (2r∆ωΣΘ(w)Φh (ΛωΣFAs)− 2r∆ωΣΘ∞Φh (ΛωΣFA∞))(5.44)

+k−2 ((ΨΦh,l(s)−ΨΦh,l,∞) + (Ψ⊥,l(s)−Ψ⊥,l,∞))
+
∑
l=3

k−l ((ΨΣ,l(s)−ΨΣ,l,∞) + (ΨΦh,l(s)−ΨΦh,l,∞) + (Ψ⊥,l(s)−Ψ⊥,l,∞))

Step 2: Correcting ΨΦh,2(s)
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We will now eliminate the term ΨΦh,2(s). This will be done altering the metric h on E. Namely
we will define the metric

(5.45) hη(s) = h+ k−1h · η(s)

where η(s) ∈ iu(E, h) is a 1-parameter family of h self-adjoint endomorphisms of E. Of course the
gauge transformations g−1

s act on hη(s) to give

hη̂(s) = g−1
s · hη(s) = hs + k−1g−1

s · (h · η(s))

= hs + k−1hs · η̂s,(5.46)

where η̂(s) = g−1
s ◦ η(s) ◦ gs.

We define

ω
′′
k,1(t) = ω

′′
k,1(s(t), w(t)) = ω(hη(s) , Js) + kωΣ + i∂̄Σ∂ΣΘ(w)

ω̂
′′
k,1(t) = g∗s

(
ω
′′
k,1(s(t), w(t))

)
= ω(hη̂(s) , J) + kωΣ + i∂̄Σ∂Σ (Θ(w)) .

Notice that we may also write:

ω
′′
k,1(s(t))([v]) = ω

′
k,1(s(t))([v]) + i∂Js∂Js log(hηs(v, v)

h(v, v) )

= ω
′
k,1(s(t))([v]) + i∂Js∂Js log(1 + k−1h(ηsv, v)

h(v, v) )

= ω
′
k,1(s(t))([v]) + i∂Js∂Js log(1 + k−1Φh (−iηs([v]))) ,

so that

ω
′′
k,1(s(t)) = ω

′
k,1(s(t)) + i∂Js∂Js log(1 + k−1Φh (−iηs))

= ω
′
k,1(s(t)) + i∂Js∂Js

(
k−1

∞∑
i=1

(−1)i+1k−(i−1) (Φh (−iηs))i
)

= ω
′
k,1(s(t)) + i∂Js∂Js

(
−k−1

∞∑
i=1

(k−(i−1) (Φh (iηs))i
)

ω
′
k,1(s(t)) + i∂Js∂Js

(
k−1Ξ(ηs)

)
,

where we define

(5.47) Ξ(ηs) = −
∞∑
i=1

(k−(i−1) (Φh (iηs))i .

Therefore changing the metric to hηs is equivalent to adding the two form defined by the potential
Ξ(ηs).

To see how to eliminate the term ΨΦh,2, we will begin by calculating expressions for

∂ω̂
′′
k,1(s(t))
∂t

and Scal
(
ω̂
′′
k,1(s(t))

)
,

because the calculations are more straightforward in the framework of the metrics ω̂′′k,1(s(t)) rather
than ω′′k,1(s(t)).

By Lemma 4.9 we have that

∂ω̂
′′
k,1(s(t))
∂t

= rk−1
(
∂ω̂
′′
k,1(s(t))
∂s

)
= rk−1

(
∂ω(hη̂s , J)

∂s
+ i∂J∂JΘ(w)

)
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= rk−1
(
∂ω(hη̂s , J)

∂s
+
∂ω̂
′
k,1(s(t))
∂s

− ∂ω(hs, J)
∂s

)
(5.48)

=
∂ω̂
′
k,1(s(t))
∂t

+ rk−1
(
∂ω(hη̂s , J)

∂s
− ∂ω(hs, J)

∂s

)

=
∂ω̂
′
k,1(s(t))
∂t

+ rk−1i∂J∂J

(
Φh

η̂s

(
ih−1
η̂s

∂hη̂s
∂s

)
− Φhs

(
ih−1
s

∂hs
∂s

))
.

Similarly, according to equation 5.34 after replacing h by hηs and pulling back by g̃s, we have

Scal
(
ω̂
′′
k,1(s(t))

)
= Scal

(
ωFS(Pr−1)

)
+ k−1

((
Scal(ωΣ)− 2r(Φh

η̂s
(ΛωΣF

◦
h
η̂s

)
))

+k−2(D∗ωΣDωΣΘ(w) + 2r∆ωΣΘ(w)Φh
η̂s

(ΛωΣF
◦
h
η̂s

) + ΨΣ,2(t) + ΨΦh
η̂s

,2(t) + Ψ⊥,2(t))

+
∑
l=3

k−l(ΨΣ,l(s) + ΨΦh
η̂s

,l(s) + Ψ⊥,l(s)).

In order to obtain a more precise expression for each of these functions in terms of Φhs(ΛωΣFhs),
we must calculate the quantities

Φh
η̂s

(
ih−1
η̂s

∂hη̂s
∂s

)
and Φh

η̂s
(ΛωΣF

◦
h
η̂s

).

We have by definition of ih−1
η̂s

∂h
η̂s
∂s

Φh
η̂s

(
ih−1
η̂s

∂hη̂s
∂s

)
([v]) =

√
−1

hη̂s(ih
−1
η̂s

∂h
η̂s
∂s v, v)

hη̂s(v, v) =
√
−1

ihη̂s(v, h
−1
η̂s

∂h
η̂s
∂s v)

hη̂s(v, v) =
√
−1

i
∂h

η̂s
∂s (v, v)
hη̂s(v, v)

=
√
−1

i∂hs∂s (v, v) + k−1i∂(hs·η̂s)
∂s (v, v)

hs(v, v) + k−1hs(η̂s(v), v)

=
√
−1

i∂hs∂s (v, v) + k−1i∂hs∂s (η̂s(v), v) + k−1ihs(v, ∂η̂s∂s v)
hs(v, v)

(
1 + k−1hs(η̂s(v), v)

hs(v, v)

)−1

=
√
−1

hs(ih−1
s

∂hs
∂s v, v)

hs(v, v)
(
1 + k−1Φhs (−iη̂s)

)−1
([v])

+
√
−1

k−1hs(ih−1
s

∂hs
∂s ◦ η̂s(v), v) + k−1hs(i∂η̂s∂s (v), v)

hs(v, v)
(
1 + k−1Φhs (−iη̂s)

)−1
([v])

= Φhs

(
ih−1
s

∂hs
∂s

)
([v]) ·

∞∑
i=0

k−i(Φhs (iη̂s))i([v]))

+k−1
(

Φhs

(
ih−1
s

∂hs
∂s
◦ η̂s

)
([v]) + Φhs

(
i
∂η̂s
∂s

)
([v])

) ∞∑
i=0

k−i(Φhs (iη̂s))i([v]).

Now since hs follows the HYM flow, namely

ih−1
s ∂shs = 2(ΛωFhs − iµ(E)IdE),

in particular

Φh
η̂s

(
ih−1
η̂s

∂hη̂s
∂s

)
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= 2Φhs(ΛωΣFhs) + 2µ(E) + k−1Φhs

(
i
∂η̂s
∂s

)
(5.49)

+k−1 (2Φhs (ΛωΣFhs ◦ η̂s) + 2Φhs(ΛωΣFhs) · Φhs (iη̂s)) +O(k−2).

In a similar way we obtain

Φh
η̂s

(ΛωΣF
◦
h
η̂s

)([v]) =
√
−1

hη̂s(ΛωΣF
◦
h
η̂s

v, v)

hη̂s(v, v) =
√
−1

hs(ΛωΣF
◦
h
η̂s

v, v) + k−1hs(η̂s ◦ ΛωΣF
◦
h
η̂s

v, v)

hs(v, v) + k−1hs(η̂s(v), v)

=
(

Φhs

(
ΛωΣF

◦
h
η̂s

)
([v]) + k−1Φhs

(
η̂s ◦ ΛωΣF

◦
h
η̂s

)
([v])

) ∞∑
i=0

k−i(Φhs (iη̂s))i([v]),

so that

Φh
η̂s

(ΛωΣF
◦
h
η̂s

)

= Φhs

(
ΛωΣF

◦
h
η̂s

)
+ k−1

(
Φhs

(
η̂s ◦ ΛωΣF

◦
h
η̂s

)
+ Φhs

(
ΛωΣF

◦
h
η̂s

)
Φhs (iη̂s)

)
+O(k−2).(5.50)

By the construction of the Chern connection Ah
η̂s

= (∂E , hη̂s), we have

Ah
η̂s

= ∂E + h−1
η̂s
◦ ∂E∗ ◦ hη̂s ,

where we regard hη̂s as a complex anti-linear map

hη̂s : E → E∗,

and for a section σ of E (
h−1
η̂s
◦ ∂E∗ ◦ hη̂s

)
(σ) = h−1

η̂s

(
∂E∗

(
hη̂s (σ)

))
We then have

Ah
η̂s
−Ahs = h−1

η̂s
◦ ∂E∗ ◦ hη̂s − h

−1
s ◦ ∂E∗ ◦ hs

= h−1
η̂s
◦ ∂E∗ ◦ hη̂s − ∂(E,hs)

Therefore

FAh
η̂s

= Fh
η̂s

= Fhs + d
A
End(E)
hs

(
h−1
η̂s
◦ ∂E∗ ◦ hη̂s − ∂(E,hs)

)
+
(
h−1
η̂s
◦ ∂E∗ ◦ hη̂s − ∂(E,hs)

)2

= Fhs + ∂End(E)
(
h−1
η̂s
◦ ∂E∗ ◦ hη̂s − ∂(E,hs)

)
.

since there are no forms of degree (2, 0) or (0, 2).
Now we have

h−1
η̂s
◦ ∂E∗ ◦ hη̂s

= (hs + k−1hs ◦ η̂s)−1 ◦ ∂E∗ ◦ hs + k−1(hs + k−1hs ◦ η̂s)−1 ◦ ∂E∗ ◦ hs ◦ η̂s

=
( ∞∑
i=0

(−1)ik−i(η̂s)i
)
◦ h−1

s ◦ ∂E∗ ◦ hs + k−1
( ∞∑
i=0

(−1)ik−i(η̂s)i
)
◦ h−1

s ◦ ∂E∗ ◦ hs ◦ η̂s

= h−1
s ◦ ∂E∗ ◦ hs + k−1

(
∂(E,h) ◦ η̂s − η̂s ◦ ∂(E,h)

)
+
(
Ξ (η̂s) + k−1η̂s − 1

)
◦ ∂(E,h) + k−1 ◦

( ∞∑
i=1

(−1)ik−i(η̂s)i
)
◦ ∂(E,h) ◦ η̂s
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= ∂(E,hs) + k−1
(
∂(End(E),hs)η̂s

)
+ k−1

( ∞∑
i=1

(−1)ik−i(η̂s)i
)
◦ ∂(End(E),hs)η̂s

= ∂(E,hs) + k−1
(
∂(End(E),hs)η̂s

)
+O(k−2).

Therefore we obtain

FAh
η̂s

= Fhs + k−1
(
∂End(E)∂(End(E),hs)η̂s

)
+ ∂End(E)

(
k−1

(
(
∞∑
i=1

(−1)ik−i(η̂s)i
)
◦ ∂(End(E),hs)η̂s

)

= Fhs + k−1
(
∂End(E)∂(End(E),hs)η̂s

)
+O(k−2),(5.51)

and

ΛωΣFAh
η̂s

= ΛωΣFhs − k
−1
(
i∆

∂
End(E)
hs

(η̂s)
)

+O(k−2).(5.52)

Finally we get

Φh
η̂s

(ΛωΣFh
η̂s

) = Φhs (ΛωΣFhs)− k−1
(

Φhs

(
i∆

∂
End(E)
hs

(η̂s)
))

+k−1 (Φhs (ΛωΣFhs) Φhs (iη̂s) + Φhs (η̂s ◦ ΛωΣFhs)) +O(k−2).(5.53)

At a formal level we therefore get:

∂ω̂
′′
k,1(s(t))
∂t

+ i∂J∂J
(
Scal

(
ω̂
′′
k,1(s(t))

))
=

∂ω̂
′
k,1(s(t))
∂t

+ rk−1
(

Φh
η̂s

(
ih−1
η̂s

∂hη̂s
∂s

)
− Φhs

(
ih−1
s

∂hs
∂s

))

+i∂J∂J
(
−k−1

(
2r(Φh

η̂s
(ΛωΣFh

η̂s
)
))

+i∂J∂J
(
k−2(D∗ωΣDωΣΘ(w)) + 2r∆ωΣΘ(w)Φh

η̂s
(ΛωΣFh

η̂s
))
)

+i∂J∂J
(
k−2

(
ΨΣ,2(t) + ΨΦh

η̂s

,2(t) + Ψ⊥,2(t)
))

+i∂J∂J

(∑
l=3

k−l(ΨΣ,l(s) + ΨΦh
η̂s

,l(s) + Ψ⊥,l(s))
)

=
∂ω̂
′
k,1(s(t))
∂t

+ k−22ri∂J∂J
(

Φhs(ΛωΣFhs) · Φhs (iη̂s) + Φhs (ΛωΣFhs ◦ η̂s) + Φhs

(1
2 i
∂η̂s
∂s

))
−i∂J∂J

(
k−1 (2r(Φhs (ΛωΣFhs))

)
+ i∂J∂J

(
k−2(D∗ωΣDωΣΘ(w)) + 2r∆ωΣΘ(w)Φhs(ΛωΣFhs))

)
+i∂J∂J

(
k−2

(
ΨΣ,2(t) + ΨΦhs ,2(t) + Ψ⊥,2(t)

))
+i∂J∂J

(∑
l=3

k−l(ΨΣ,l(s) + ΨΦhs ,l(s) + Ψ⊥,l(s))
)

+k−22ri∂J∂J
(

Φhs

(
i∆

∂
End(E)
hs

(η̂s)
))

−k−22ri∂J∂J (Φhs (ΛωΣFhs) Φhs (iη̂s) + Φhs (η̂s ◦ ΛωΣFhs)) +O(k−3)

=
∂ω̂
′
k,1(s(t))
∂t

+ i∂J∂JScal
(
ω̂
′
k,1(s(t))

)
+ k−22r

(
Φhs

(
i

(1
2
∂η̂s
∂s

+ ∆
∂
End(E)
hs

(η̂s)
)

+ [ΛωΣFhs , η̂s]
))

+O(k−3)
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= k−2i∂J∂J
(
(2r∆ωΣΘ(w)Φhs(ΛωΣFhs) + ΨΦhs ,2(t) + Ψ⊥,2(t))

)
+k−22ri∂J∂J

(
Φhs

(
i

(1
2
∂η̂s
∂s

+ ∆
∂
End(E)
hs

(η̂s)
)

+ [ΛωΣFhs , η̂s]
))

+O(k−3).

Now recall that
ω̂
′′
k,1(s(t)) = g̃∗s(ω

′′
k,1(s(t))).

By Lemma 4.12 we obtain

2rk−1
(
∂ω
′′
k,1(s(t))
∂s

+ LVs
(
ω
′′
k,1(s(t))

))
+ i∂Js∂Js

(
Scal

(
ω
′′
k,1(s(t))

))
= k−2i∂Js∂Js

(
(2r∆ωΣΘ(w)Φh(Λ(ωΣFAs) + ΨΦh,2(s(t)) + Ψ⊥,2(s(t)))

)
+k−22ri∂Js∂Js

(
Φh

(
i(g−1

s )∗
(1

2
∂η̂s
∂s

+ ∆
∂
End(E)
hs

(η̂s)
)

+ (g−1
s )∗ ([ΛωΣFhs , η̂s])

))
+O(k−3).

Using the formulae

η̂s = g−1
s ◦ ηs ◦ gs,ΛωΣFhs = g−1

s ◦ ΛωΣFAs ◦ gs
and Equation 3.11 one easily calculates that

(g−1
s )∗

(1
2 i
∂η̂s
∂s

)
= 1

2 i
∂ηs
∂s

+ 1
2 [ηs,ΛωΣFAs ]

(g−1
s )∗∆

∂
End(E)
hs

(ηs) = ∆
∂
End(Es)
h

(ηs),

and (g−1
s )∗ ([ΛωΣFhs , η̂s]) = [ΛωΣFAs , ηs],

so that

i(g−1
s )∗

(1
2
∂η̂s
∂s

+ ∆
∂
End(E)
hs

(η̂s)
)

+ (g−1
s )∗ ([ΛωΣFhs , η̂s])

= i

(1
2
∂ηs
∂s

+ ∆
∂
End(Es)
h

(ηs)
)

+ 1
2[ΛωΣFAs , ηs],

and we obtain

rk−1
(
∂ω
′′
k,1(s(t))
∂s

+ LVs
(
ω
′′
k,1(s(t))

))
+ i∂Js∂Js

(
Scal

(
ω
′′
k,1(s(t))

))
= k−2

(
i∂Js∂Js

(
rΦh

(
i
∂ηs
∂s

+ 2i∆
∂
End(Es)
h

(ηs) + 2∆ωΣΘ(w) · ΛωΣFAs + [ΛωΣFAs , ηs] + α(s)
)))

+k−2
(
i∂Js∂JsΨ⊥,2(s(t)))

)
+O(k−3),

where α(s) is a family of endomorphisms such that

(5.54) Φh (rα(s)) = ΨΦh,2(s(t)).

Recall the Bochner-Kodaira-Nakano identity, which applied to the induced connections AEnd(E)
s

on End(E), gives an equality

∆AEndEs
(ηs) = 2∆

∂
End(Es)
h

(ηs) + i
[
FAs ,ΛEndEω

]
(ηs)

= 2∆
∂
End(Es)
h

(ηs)−
(
iΛEndEω FAs

)
(ηs)

= 2∆
∂
End(Es)
h

(ηs)− i [ΛωFAs , ηs] ,

or
i∆AEndEs

(ηs) = 2i∆
∂
End(Es)
h

(ηs) + [ΛωFAs , ηs]
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and so this last quantity is equal to

k−2
(
i∂Js∂JsrΦh

(
i

(
∂ηs
∂s

+ ∆AEndEs
(ηs)

)
+ 2∆ωΣΘ(w) · ΛωΣFAs + α(s)

)
+ Ψ⊥,2(s(t)))

)
+O(k−3).

We now define the one parameter family ηs. We note that since by Theorem 3.5 the limiting
holomorphic bundle

E∞ ∼= Gr(E) = ⊕iQj
splits as a direct sum of of stable bundles Qj , by Lemma 3.4 an element of ker ∆AEndE∞

is of the
form ∑

j

cj,∞IdQj ,

and so if
Φh (rα∞) = ΨΦh,2,∞,

then we may write
− (2∆ωΣΘ∞ · ΛωΣFA∞ + α∞) = β∞ +

∑
j

cj,∞IdQj ,

where
β∞ ⊥ ker ∆AEndE∞

,

where here ⊥ means L2(gΣ) orthogonal. Since the bundle E , which is isomorphic to Es for all s, is
simple, we

ker ∆AEndEs
⊂ ker ∆AEndE∞

for all s, because if cj,∞ = c∞ for all j, then∑
j

c∞IdQj = c∞IdE

where we use the fact that, as smooth vector bundles

Gr(E) ' E.

Therefore we also have
β∞ ⊥ ker ∆AEndEs

for all s. Then for each s there is a solution Gs(β∞) to the elliptic equation

(5.55) ∆AEndEs
(Gs(iβ∞)) = iβ∞,

where Gs is the Green’s operator for ∆AEndEs
.

We may similarly write

−(2∆ωΣΘ(w) · ΛωΣFAs + α(s)) = β(s) +
∑
j

cj(s)IdQj

where ∑
i

ci(s)IdQi = prker ∆
AEndE∞

(−(2∆ωΣΘ(w) · ΛωΣFAs + α(s)) ,

β(s) ⊥ ker ∆AEndE∞
,

and ci(s) is a constant for each i and s.
Note that we may solve the system of ordinary differential equations

dηs
dt

= −i
∑
j

cj(s)IdQj(5.56)

η0 = 0,
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for all time. Now fix a large positive number S and consider the cutoff function gS(s) such that
gS ≡ 1 on the interval [0, S] and gS ≡ 0 on [2S,∞). By construction then

gS(s) · ηs ∈Wp,q,wε(s)(gΣ, h),

and still solves equation on the interval [0, S].
Then we define η̃s to be the solution to the initial value equation

(5.57) ∂η̃s
∂s

+ ∆AEndEs
(η̃s) = −i(β(s)− β∞) + ∂s (Gs(iβ∞))− gS(s) ·∆As(ηs)

η̃0 = G0 (iβ∞)
which we obtain from Theorem 7.10.

We briefly explain why this theorem applies. By construction we have

(β(s)− β∞) ⊥ ker ∆AEndEs
, ker ∆AEndE∞

for all s. Similarly, since
Gs(iβ∞) ⊥ ker ∆AEndEs

, ker ∆AEndE∞

for all s by construction, for the tangent vectors we also have

∂s (Gs(iβ∞)) ⊥ ker ∆AEndEs
, ker ∆AEndE∞

for all s, since for example, if σ is any element of ker ∆AEndE∞

〈(Gs(iβ∞)) , σ〉L2(gΣ) = 0

and so
0 = ∂s

(
〈(Gs(iβ∞)) , σ〉L2(gΣ)

)
= 〈(∂sGs(iβ∞)) , σ〉L2(gΣ) .

Since gS(s) is 0 for s sufficiently large, the right hand side of our equation is therefore orthogonal
to the kernels for large s.

Moreover, since by the proof of Lemma 4.9 ΨΦh,2(s(t))→ ΨΦh,2,∞, smoothly at a rate of 1√
t
and

all time derivatives of ΨΦh,2(s(t)) converge to zero at the same rate, by Lemma 4.15 α(s) → α∞
smoothly at a rate of 1√

t
, and all time derivatives α(s) converge to zero at the same rate. Similarly

‖∆ωΣΘ(w) · ΛωΣFAs −∆ωΣΘ∞ · ΛωΣFA∞‖Cm(gΣ,h)

= ‖∆ωΣΘ(w) · (ΛωΣFAs − ΛωΣFA∞) + ∆ωΣ(Θ(w)−Θ∞) · ΛωΣFA∞‖Cm(gΣ,h)

≤ C
(
‖ΛωΣFAs − ΛωΣFA∞‖Cm(gΣ,h) + ‖∆ωΣ(Θ(w)−Θ∞)‖Cm(gΣ,h))

)
≤ C√

s

for all m, for all sufficiently large t, and in the same way∥∥∥∂js∆ωΣΘ(w) · ΛωΣFAs

∥∥∥
Cm(gΣ,h)

≤ C√
s

for all m and j ≥ 1 for all sufficiently large s.
Then β(s) +

∑
j cj(s)IdQj may be estimated in this way as well, and by the continuity of the or-

thogonal projection operator, we have β(s)→ β∞ smoothly at a rate of 1√
s
, and all time derivatives

of β(s) converge to zero at the same rate. Therefore we have

i (β(s)− β∞) ∈W4,p,q,wε(s)(gΣ, h).

Note that projecting onto the kernel, we we also obtain in particular that in fact

− (2∆ωΣΘ∞ · ΛωΣFA∞ + α∞) = β∞ + c∞IdE ,
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for some constant c∞, since c(t)IdE must converge to c∞IdE .
Furthermore, by the Bochner-Kodaira -Nakano identity we have:

∆AEndEs
−∆AEndE∞

= 2iΛωΣ∂End(Es)∂(End(Es),h) − 2iΛωΣ∂End(E∞)∂(End(E∞),h)

+i([ΛωΣFA∞ ,−]− [ΛωΣFAs ,−])
= 2iΛωΣ(∂End(E∞) + a0,1

s )(∂(End(E∞),h) + a1,0
s )− 2iΛωΣ∂End(E∞)∂(End(E∞),h)(5.58)

+i([ΛωΣFA∞ − ΛωΣFAs ,−]

= 2iΛωΣ

(
∂End(E∞) ◦ a1,0

s + a0,1
s ◦ ∂(End(E∞),h) + a0,1

s ∧ a1,0
s ,

)
+i([ΛωΣFA∞ − ΛωΣFAs ,−]

where a0,1
s and a1,0

s converge smoothly to zero at a rate of 1/
√
s. We therefore obtain bounds of

the form ∥∥∥∂js (∆AEndEs
−∆AEndE∞

)∥∥∥
Cm(gΣ,h)

≤ C√
s

for all m and j and all sufficiently large t. Since we have

∆AEndEs
◦Gs = Gs ◦∆AEndEs

= Id(ker ∆
AEndEs

)⊥ ,

and since ∆AEndEs
converges to ∆AEndE∞

, we also have Gs → G∞, smoothly, and all time derivatives
go to zero at a rate of 1/

√
t. Moreover

Gs −G∞ = G∞ ◦
(
∆AEndE∞

−∆AEndEs

)
◦Gs,

so we obtain a bound ∥∥∥∂js (Gs −G∞)
∥∥∥
Cm(gΣ,h)

≤ C√
s

for all m and j and all sufficiently large t. In particular we obtain

∂s (Gs(iβ∞)) ∈W4,p,q,wε(s)(gΣ, h).

Therefore since gS(s) ·∆As(ηs) is 0 for large s, the result applies.
Now we may define ηs by

(5.59) ηs = η̃s +Gs(−iβ∞) + gS(s) · ηs,

which by definition then satisfies the equation

(5.60) ∂ηs
∂s

+ ∆AEndEs
(ηs) = −iβ(s) + ∂

∂s
(gS(s) · ηs) ,

η0 = 0.

Notice that on the interval [0, S], the right hand side of this equation is exactly

i (2∆ωΣΘ(w)ΛωΣFAs + α(s)) .

Remark 5.9. We remark that we should really write ηSs for ηs, since we have really constructed a
one parameter family of paths, with each path depending on our choice of cut-off function. However,
here and in the sequel we will drop this piece of notation. Note also that the limit of the ηSs at
infinity is independent of S, since the cut-off function vanish for sufficiently large s.
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Moreover, by the parabolic Sobolev theory we obtain an estimate of the form

‖η̃s‖W4,p+1,q,wε(s)(gΣ,h)

= ‖ηs −Gs(−iβ∞)− gS(s) · ηs‖W4,p+1,q,wε(s)(gΣ,h)

≤ C ‖G0(iβ∞)‖L2
4p+2(gΣ,h)

+C ‖i(β(s)− β∞) + ∂s (Gs(iβ∞))− gS(s) ·∆As(ηs) ‖W4,p,q,wε(s)(gΣ,h)

= O(1).

so that if we write η∞ = G∞(−iβ∞), we have

‖ηs − η∞‖W4,p+1,q,wε(s)(gΣ,h)

= ‖ηs −Gs(−iβ∞) +Gs(−iβ∞)−G∞(iβ∞) + gS(s) · ηs − gS(s) · ηs‖W4,p+1,q,wε(s)(gΣ,h)

≤ ‖η̃s‖W4,p+1,q,wε(s)(gΣ,h) + ‖Gs(−iβ∞)−G∞(−iβ∞)‖W4,p+1,q,wε(s)(gΣ,h)(5.61)

+ ‖gS(s) · ηs‖W4,p+1,q,wε(s)(gΣ,h)

= O(1).

Formally, on the interval [0, S] we obtain:

rk−1
(
∂ω
′′
k,1(s(t))
∂s

+ LVs
(
ω
′′
k,1(s(t))

))
+ i∂Js∂Js

(
Scal

(
ω
′′
k,1(s(t))

))
= k−2

(
i∂Js∂Js (rΦh (i (i (2∆ωΣΘ(w)ΛωΣFAs + α(s))) + 2∆ωΣΘ(w)ΛωΣFAs + α(s))))

)
(5.62)

+k−2i∂Js∂JsΨ⊥,2(s(t)) +O(k−3)

= k−2
(
i∂J∂JΨ⊥,2(s(t)))

)
+O(k−3).

Pulling back by g̃s again, so we get an analogue of equation 5.29

(5.63)
∂ω̂
′′
k,1(s(t))
∂t

+ i∂J∂JScal
(
ω̂
′′
k,1(s(t))

)
= k−2

(
i∂J∂JΨ⊥,2(s(t)))

)
+O(k−3),

for s ∈ [0, S]. Then we have formally eliminated ΨΦhs ,2(s(t)) (at least on this interval, but again,
note that the interval is arbitrary).

Now we define

H(ω′′k,1(s(t)) = H(ω′k,1(s(t))− k−2ΨΦh,2(s(t)) + 2rk−2 (Φh (ΛωΣFAs) Φh (iηs))

−rk−2
(
Φh

(
i∆AEndEs

(ηs) + 2∆ωΣΘ(w) · ΛωΣFAs − 2ΛωΣFAs ◦ ηs
))

+2rk−1Φh(ΛωFAs)
( ∞∑
i=2

(−1)ik−i(Φh

(
iηs)i

))
(5.64)

+k−2rΦh

(
i
∂ηs
∂s

+ 2ΛωΣFAs ◦ ηs)
)( ∞∑

i=1
(−1)ik−i(Φh

(
iηs)i

))
.

Pulling back the formula 5.48 for ∂ω̂
′′
k,1(s(t))
∂s by (g̃s)−1 and also using equation 5.49 as well as

equation 5.40, one may check that we obtain an analogue of equation 5.28, namely for s ∈ [0, S]:

rk−1
(
∂ω
′′
k,1(s(t))
∂s

+ LVs
(
ω
′′
k,1(s(t))

))
= i∂Js∂JsH(ω′′k,1(s(t)).(5.65)
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By taking t to infinity, and noting that by the parabolic theory we have C∞ convergence ηs → η∞,
with η∞ as defined above, we obtain a fixed Kähler metric

ω
′′
k,1,∞ = ω

′
k,1,∞ + i∂J∞∂J∞

(
k−1Ξ (ηs)

)
(5.66)

= ω (hη∞ , J∞) + kωΣ + i∂J∞∂J∞Θ∞
on P(E∞).

We analogously define

H(ω′′k,1,∞) = H(ω′k,1,∞)− k−2ΨΦh,2,∞ + 2rk−2 (Φh (ΛωΣFA∞) Φh (iη∞))

−rk−2
(
Φh

(
i∆AEndE∞

(η∞) + 2∆ωΣΘ∞ · ΛωΣFA∞ − 2ΛωΣFA∞ ◦ η∞
))

+2rk−1Φh(ΛωFA∞)
( ∞∑
i=2

(−1)ik−i(Φh

(
iη∞)i

))
(5.67)

+k−2rΦh (2ΛωΣFA∞ ◦ η∞))
( ∞∑
i=1

(−1)ik−i(Φh

(
iη∞)i

))
.

Note that by definition, we have

i∆
A
End(E)
∞

(η∞) = β∞,

and therefore we may also write

(5.68) H(ω′′k,1,∞) = 2rk−1Φh

ΛωΣF
◦
A∞ −

k−1

2
∑
j

cj,∞IdQj

+O(k−2).

The analogue of the expansion 5.34 for Scal(ω′′k,1,∞) using (the analogue of) formula 5.50 is

Scal(ω′′k,1,∞) = Scal(ωFS(Pr−1)) + k−1 (Scal(ωΣ)− 2rΦh (ΛωΣFA∞))

+k−2
(
rΦh

(
i∆

A
End(E)
∞

(η∞) + 2∆ωΣΘ∞ · ΛωΣFA∞

)
+ ΨΦh2,∞ + Ψ⊥,2,∞

)
−2rk−2 (Φh (η∞ ◦ ΛωΣFA∞) + Φh (ΛωΣFA∞) · Φh (iη∞)) +O(k−3)

= Scal(ωFS(Pr−1)) + k−1 (Scal(ωΣ)− 2rΦh (ΛωΣFA∞))
+rk−2 (Φh (−ΛωΣFA∞ ◦ η∞ − η∞ ◦ ΛωΣFA∞ + c∞) + Ψ⊥,2,∞)
Φh (ΛωΣFA∞) · Φh (iη∞) +O(k−3),

so that

Scal(ω′′k,1,∞) +H
(
ω
′′
k,1,∞

)
= Scal(ωFS(Pr−1)) + k−1 (Scal(ωΣ)) + k−2Ψ⊥,2,∞

+O(k−3).

Notice that by equations 5.65, 5.62, 5.48 and 5.49, we have:

Scal
(
ω
′′
k,1(s(t))

)
+H(ω′′k,1(s(t))

= Scal
(
ωFS(Pr−1)

)
+ k−1Scal (ωΣ)

+ k−2 (Ψ⊥,2(s(t)))) +
∑
l=3

k−l(ΨΣ,l(s) + ΨΦh,l(s) + Ψ⊥,l(s)),

so that we obtain an analogue of equation 5.27, namely:

Scal
(
ω
′′
k,1(s(t))

)
+H(ω′′k,1(s(t))−

(
Scal

(
ω′′k,1,∞

)
+H(ω′′k,1,∞)

)
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= k−2 (Ψ⊥,2(s)−Ψ⊥,2,∞)(5.69)
+
∑
l=3

k−l ((ΨΣ,l(s)−ΨΣ,l,∞) + (ΨΦh,l(s)−ΨΦh,l,∞) + (Ψ⊥,l(s)−Ψ⊥,l,∞)) ,

where we again note that for the moment we have kept the same notation for the terms of higher
order, even though they have been modified.

Step 3: Correcting Ψ⊥,2(s) The final step is to correct Ψ⊥,2(s). We will do this by adding a
function

Ω̂(s(t)) := g̃∗s(Ω(s(t)))
for a 1-parameter family of functions Ω(s(t)) ∈ C∞(P(E)), where, as usual, this family will be
determined later by solving a linear parabolic equation. We may finally define

ωk,2(s(t)) = ω
′′
k,1(s(t)) + k−2i∂̄J∂J (Ω(s(t)))(5.70)

ω̂k,2(s(t)) = ω̂
′′
k,1(s(t)) + k−2i∂̄J∂J

(
Ω̂(s(t))

)
.(5.71)

We will begin by calculating the scalar curvature of ω̂k,2(t). We have

Scal (ω̂k,2(t)) = Λω̂k,2(s(t))ρω̂k,2(s(t))

= Λ
ω̂
′′
k,1(s(t))+k−2i∂̄J∂J

(
Ω̂(s(t))

)ρ
ω̂
′′
k,1(s(t))+k−2i∂̄J∂J

(
Ω̂(s(t))

)
=

(
ρ
ω̂
′′
k,1(s(t))+k−2i∂̄J∂J

(
Ω̂(s(t))

)) ∧ (ω̂′′k,1(s(t)) + k−2i∂̄J∂J
(
Ω̂(s(t))

))r−1

(
ω̂
′′
k,1(s(t)) + k−2i∂̄J∂J

(
Ω̂(s(t))

))r .

Now as in previous calculations we may write

ρ
ω̂
′′
k,1(s(t))+k−2i∂̄J∂J

(
Ω̂(s(t))

)
= ρ

ω̂
′′
k,1(s(t)) + i∂J∂J log


(
ω̂
′′
k,1(s(t)) + k−2i∂̄J∂J

(
Ω̂(s(t))

))r(
ω̂
′′
k,1(s(t))

)r


= ρ
ω̂
′′
k,1(s(t)) + i∂J∂J log

1 + k−2
r∑
i=1

(
r

i

)
k2−2i

(
ω̂
′′
k,1(s(t))

)r−i
∧
(
i∂̄J∂J

(
Ω̂(s(t))

))i(
ω̂
′′
k,1(s(t))

)r


= ρ
ω̂
′′
k,1(s(t)) + k−2i∂j∂J∆

ω̂
′′
k,1(s(t))Ω̂(s(t)) +O(k−4).

Similarly, for any path of r-forms α(s) we have
α(s)(

ω̂
′′
k,1(s(t)) + k−2i∂̄J∂J

(
Ω̂(s(t))

))r
= α(s)(

ω̂
′′
k,1(s(t))

)r 1(
1 + k−2

r∑
i=1

k2−2i

(
r

i

) (
ω̂
′′
k,1(s(t))

)r−i
∧
(
i∂̄J∂J

(
Ω̂(s(t))

))i(
ω̂
′′
k,1(s(t))

)r )

= α(s)(
ω̂
′′
k,1(s(t))

)r (1 + k−2∆
ω̂
′′
k,1(s(t))Ω̂(s(t)) +O(k−4)

)
.

Therefore we obtain

Scal (ω̂k,2(s(t)))
= Scal(ω̂′′k,1(s(t)) + k−2i∂j∂J Ω̂(s(t))
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= r

(
ρ
ω̂
′′
k,1(s(t)) + k−2i∂j∂J∆

ω̂
′′
k,1(s(t))Ω̂(s(t)) +O(k−4)

)
∧
(
ω̂
′′
k,1(s(t)) + k−2i∂j∂J Ω̂(s(t)

)r−1

(
ω̂
′′
k,1(s(t)) + k−2i∂j∂J Ω̂(s(t)

)r

= r

(
ρ
ω̂
′′
k,1(s(t)) + k−2i∂j∂J∆

ω̂
′′
k,1(s(t))Ω̂(s(t))

)
∧
(
ω̂
′′
k,1(s(t))

)r−1

(
ω̂
′′
k,1(s(t)) + k−2i∂j∂J Ω̂(s(t)

)r
+
k−2(r − 1)ρ

ω̂
′′
k,1(s(t)) ∧

(
ω̂
′′
k,1(s(t))

)r−2
∧ i∂j∂J Ω̂(s(t)(

ω̂
′′
k,1(s(t)) + k−2i∂j∂J Ω̂(s(t)

)r +O(k−4)(5.72)

= Scal
(
ω̂
′′
k,1(s(t))

)
+ k−2

(
∆2
ω̂
′′
k,1(s(t))Ω̂(s(t))− Scal

(
ω̂
′′
k,1(s(t))

)(
∆
ω̂
′′
k,1(s(t))Ω̂(s(t))

))

+k−2r(r − 1)

(
ρ
ω̂
′′
k,1(s(t)) ∧

(
ω̂
′′
k,1(s(t))

)r−2
∧ i∂j∂J Ω̂(s(t)

)
(
ω̂
′′
k,1(s(t))

)r
= Scal

(
ω̂
′′
k,1(s(t))

)
+ k−2

(
d
ω̂
′′
k,1(s(t))Scal

(
Ω̂(s(t))

))
+O(k−4),

where in the last line we have used Lemma 2.5.
Notice that d

ω̂
′′
k,1(s(t))Scal

(
Ω̂(s(t))

)
depends on k, so we will need to calculate this more explicitly

to see what the k−2 term of this expansion is. We begin by expanding the Laplacian. We have

∆
ω̂
′′
k,1(s(t))

(
Ω̂(s(t))

)
= Λ

ω̂
′′
k,1(s(t))

(
i∂̄J∂J

(
Ω̂(s(t))

))

= r
i∂̄J∂J

(
Ω̂(s(t))

)
∧
(
ω̂
′′
k,1(s(t))

)r−1(
ω̂
′′
k,1(s(t))

)r
=

i∂̄J∂J
(
Ω̂(s(t))

)
∧
(
ω(hs, J) + i∂̄Σ∂ΣΘ(w) + k−1i∂̄J∂JΞ(η̂s

)
)r−1(

ωk(hs, J) + i∂̄Σ∂ΣΘ(w) + k−1i∂̄J∂JΞ(η̂s
)
)r

=

(
i∂̄J∂J

(
Ω̂(s(t))

))
HH

(Φhs(−ΛωΣFhs) + ∆ωΣΘ(w) + k−1∆HΞ(η̂s) + k)ωΣ
(5.73)

+(r − 1)

(
i∂̄J∂J

(
Ω̂(s(t))

))
VV
∧
(
ωFS(hs) + k−1

(
i∂̄J∂JΞ(η̂s)

)
VV

)r−2

(
ωFS(hs) + k−1

(
i∂̄J∂JΞ(η̂s)

)
VV

)r−1

= ∆(V,hs)
(
Ω̂(s(t))

)
+O(k−1).

We also have

ρ
ω̂
′′
k,1(s(t)) = ρω̂k,1(s(t))

+i∂J∂J log

(Φhs(−ΛωΣFhs) + ∆ωΣΘ(w) + k−1∆HΞ(η̂s) + k)ωΣ ∧ (r − 1)
(
ωFS(hs) + k−1i∂̄J∂JΞ(η̂s)

)r−1

(r − 1) (ωFS(hs))r−1 ∧ (Φhs(−ΛωΣFhs) + k)ωΣ


= ρω̂k,1(s(t)) +O(k−1)
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so that in the same way

r(r − 1)
ρ
ω̂
′′
k,1(s(t)) ∧ ω̂

′′
k,1(s(t))r−2 ∧ i∂̄J∂J

(
Ω̂(s(t))

)
(
ω̂
′′
k,1(s(t))

)r
= r(r − 1)

(rωFS(hs) + (rΦh(−ΛωFAt) + Scal(ωΣ))ωΣ) ∧ ω̂′′k,1(s(t))r−2 ∧ i∂̄J∂J
(
Ω̂(s(t))

)
(
ω̂
′′
k,1(s(t))

)r +O(k−1)

= (r − 1)(r − 2)
rωFS(hs) ∧ i∂̄J∂J

(
Ω̂(s(t))

)
VV
∧
(
ωFS(hs) + k−1

(
i∂̄J∂JΞ(η̂s)

)
VV

)r−3

(
ωFS(hs) + k−1

(
i∂̄J∂JΞ(η̂s)

)
VV

)r−1 +O(k−1)

= r(r − 1)(r − 2)
i∂̄J∂J

(
Ω̂(s(t))

)
VV
∧ (ωFS(hs))r−2

(ωFS(hs))r−1 +O(k−1)

= r(r − 2)∆(V,hs)
(
Ω̂(s(t))

)
+O(k−1).

Then finally we obtain

Scal (ω̂k,2(s(t)))

= Scal
(
ω̂
′′
k,1(s(t))

)
+ k−2

(
∆2
V

(
Ω̂(s(t))

)
− Scal

(
ωFS(Pr−1)

)
∆V

(
Ω̂(s(t))

))
+k−2

(
r(r − 2)∆V

(
Ω̂(s(t))

))
+O(k−3)

Scal
(
ω̂
′′
k,1(s(t))

)
+ k−2

(
∆2
V

(
Ω̂(s(t))

)
− 2r∆V

(
Ω̂(s(t))

))
+O(k−3),

since
Scal

(
ωFS(Pr−1)

)
= 2r(r − 1).

We will write

D∗(V,hs)D(V,hs)
(
Ω̂(s(t))

)
(5.74)

: = ∆2
V

(
Ω̂(s(t))

)
− 2r∆V

(
Ω̂(s(t))

)
so that

(5.75) Scal (ω̂k,2(s(t))) = Scal
(
ω̂
′′
k,1(s(t))

)
+ k−2D∗(V,hs)D(V,hs)

(
Ω̂(s(t))

)
+O(k−3).

We observe that for any holmorphic structure on E giving rise to a vertical bundle V, and any
hermitian metric on E; D∗(V,h)D(V,h) is an operator C∞(P(E))→ C∞(P(E)) which restricts to each
fibre to be the operator C∞(P(Ex)) → C∞(P(Ex)) given by the Lichnerowicz operator D∗xDx on
the fibre associated to the Fubini-Study metric. That is,

D∗(V,h)D(V,h)(φ)|P(Ex) = D∗xDx(φ|P(Ex)).

It is also easy to see using the fact that g̃∗s(ωFS(hs, J)) = ωFS(h, Js) that

D∗(V,hs)D(V,hs)(g̃
∗
s(Ωs)) = g̃∗s(D∗(Vs,h)D(Vs,h)(Ωs)).

The fact that D∗(Vs,h)D(Vs,h) is also self-adjoint with respect to ωk,1(s(t)) follows from the self-
adjointness of ∆(Vs,h) and ∆2

(Vs,h), which folllows from the self-adjointness of ∆ωk,1(s(t)) and ∆2
ωk,1(s(t)),

and the equalities

∆ωk,1(s(t)) = ∆(Vs,h) +O(k−1)

∆2
ωk,1(s(t)) = ∆2

(Vs,h) +O(k−1),
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(which follow from the exact same argument as for the metric ω̂′′k,1(s(t)), by simply taking k to
infinity.

As usual we may write
∂

∂t
g̃∗s(Ωs) = ∂

∂t
g̃∗s(Ωs) = ∂

∂s
g̃∗s(Ωs)

∂s

∂t

= 2rk−1g̃∗s

(
LVs(Ωs) + ∂

∂s
Ωs

)
= 2rk−1g̃∗s(LVs(Ωs)) + g̃∗s

(
∂

∂t
Ωs

)
At a formal level, we therefore obtain for all s ∈ [0, S]:

∂ω̂k,2(s(t))
∂t

+ i∂̄J∂J (Scal (ω̂k,2(s(t))))

=
∂ω̂
′′
k,1(s(t))
∂t

+ i∂̄J∂J (Scal (ω̂k,2(s(t)))) + k−2i∂̄J∂J

(
∂

∂t
g̃∗s(Ω(s))

)
+k−2i∂̄J∂J(g̃∗sD∗(V,hs)D(V,hs)((Ωs))) +O(k−3)

= k−2i∂̄J∂J(g̃∗s
(

Ψ⊥,2(s) + ∂

∂t
Ωs + D∗(Vs,h)D(Vs,h)(Ωs))

)
+k−3i∂̄J∂J(g̃∗s(LVs(Ωs)) +O(k−3).

By the definition of Ωs below, we will see that Ωs → Ω∞ smoothly as well, so that

2rk−3i∂̄J∂J(g̃∗s(LVs(Ωs)) = O(k−3)

and therefore also
∂ω̂k,2(s(t))

∂t
+ i∂̄J∂J (Scal (ω̂k,2(s(t))))(5.76)

= k−2i∂̄J∂J(g̃∗s
(

Ψ⊥,2(s) + ∂

∂t
Ωs + D∗(Vs,h)D(Vs,h)(Ωs))

)
+O(k−3)

for all s ∈ [0, S].
Given any endomorphism F ∈ su(E), recall that the restriction of the vector field XF to each

fibre P(Ex) is holomorphic, and in fact

XF |P(Ex) = ∇Φh(F )|P(Ex),

essentially by definition. In other words Φh(F )|P(Ex) is a holomorphy potential, and therefore we
obtain in particular that

D∗(Vs,h)D(Vs,h)(Φh(F ))|P(Ex) = D∗xDx(Φh(F )|P(Ex)) = 0

for all x, and therefore Φh(F ) ∈ ker(D∗(Vs,h)D(Vs,h)) for all s, or Φh(su(E)) ⊂ ker(D∗(Vs,h)D(Vs,h)).
Another way to see this is that since the Ricci curvature of the Fubini-Study metric on P(Ex) is

Ric(ωFS) = ((r − 1) + 1)ωFS = rωFS

(and in particular Scal(ωFs) is constant), so that we have for any function φ

D∗xDx(φ|P(Ex)) = ∆2
∂
(φ|P(Ex)) + r〈ωFS , i∂∂(φ|P(Ex))〉

= ∆2
∂
(φ|P(Ex))− r∆∂(φ|P(Ex))

so a smooth eigenfunction of ∆∂ is in the kernel of D∗xDx exactly when it is in the first eigenspace,
that is, when it corresponds to the eigenvalue r. In otherwords, the smooth eigenfunctions of ∆∂
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which are in the kernel of D∗xDx are exactly the functions which are restrictions of functions in
Φh(su(E)). Since, by the spectral theorem, any L2 function on P(Ex) has an orthonomal expansion
in terms of the eigenfunctions of ∆∂ , it follows that

(5.77) ker(D∗(Vs,h)D(Vs,h)) = π∗(C∞(Σ))⊕ Φh(su(E)),

for all s, and in fact this is true for any holomorphic structure, so in particular we also have

(5.78) ker(D∗(V∞,h)D(V∞,h)) = π∗(C∞(Σ))⊕ Φh(su(E)).

By definition, the space C∞h (P(E))⊥ consists of functions which are fibrewise L2 orthogonal with
respect to the Fubini-Study metric to the space on the right hand side of the above equality. Then
since D∗(Vs,h)D(Vs,h) is self-adjoint with respect to ωk,1(s(t)) (and D∗(V∞,h)D(V∞,h) with respect to
ωk,1,∞, the decomposition

C∞(P(E)) = ker(D∗(Vs,h)D(Vs,h))⊕ C∞h (P(E))⊥
= ker(D∗(V∞,h)D(V∞,h))⊕ C∞h (P(E))⊥
= π∗(C∞(Σ))⊕ Φh(su(E))⊕ C∞h (P(E))⊥

is orthogonal with respect to the L2(gk,1(s(t))) inner product for all s and with respect to the
L2(gk,1,∞) inner product.

In particular, for every s, Ψ⊥,2,∞ is L2(gk,1,∞) orthogonal to ker(D∗(Vs,h)D(Vs,h)), so that we may
solve the elliptic equation

(5.79) D∗(Vs,h)D(Vs,h) (Gs (Ψ⊥,2,∞)) = Ψ⊥,2,∞,

where Gs is the Green’s operator for D∗(Vs,h)D(Vs,h). Note that Ψ⊥,2(s) is also L2(gk,1,∞) orthogonal
to ker(D∗(Vs,h)D(Vs,h)), for every s so that

− (Ψ⊥,2(s)−Ψ⊥,2,∞) ⊥L2(gk,1,∞) ker(D∗(Vs,h)D(Vs,h)).

for all s. Note also that for any φ ∈ π∗(C∞(Σ))⊕ Φh(su(E)) we have

0 = 〈φ,Gs (Ψ⊥,2,∞)〉L2(gk,1,∞)

=⇒ 0 = ∂

∂s
〈φ,Gs (Ψ⊥,2,∞)〉L2(gk,1,∞)

= 〈φ, ∂sGs (Ψ⊥,2,∞)〉L2(gk,1,∞) ,

so also
∂sGs (Ψ⊥,2,∞) ⊥L2(gk,1,∞) ker(D∗(Vs,h)D(Vs,h)).

for all s. By Lemma 5.5 we have

Ψ⊥,2(s)−Ψ⊥,2,∞ ∈W4,p,,q,wε(s)(gk,1,∞).

We will write G∞ for the Green’s operator for D∗(V∞,h)D(V∞,h). On the space C∞h (P(E))⊥ we
have

Gs −G∞ = G∞ ◦
(
D∗(Vs,h)D(Vs,h) −D∗(V∞,h)D(V∞,h)

)
◦Gs,

since
D∗(Vs,h)D(Vs,h) ◦Gs = G∞ ◦D∗(V∞,h)D(V∞,h) = IdC∞

h
(P(E))⊥ .

One may easily show that∥∥∥∂js (D∗(Vs,h)D(Vs,h) −D∗(V∞,h)D(V∞,h)
)∥∥∥

Cm(gk,1,∞)
≤ C√

s
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for all m and j, and all s sufficiently large, by using the expression for thes operators, and previous
estimates. We therefore obtain Gs

C∞→ G∞, and in fact∥∥∥∂js (Gs −G∞)
∥∥∥
Cm(gk,1,∞)

≤ C√
s

for all m and j, and all s sufficiently large. In particular

‖∂tGs‖W4,p,q,wε(s)(gk,1,∞) = k−1 ‖∂sGs‖W4,p,q,wε(s)(gk,1,∞) = O(k−1/2),

and in particular
∂tGs (Ψ⊥,2,∞) ∈W4,p,q,wε(s)(gk,1,∞).

By Theorem 7.10 we may therefore solve the parabolic equation

(5.80) ∂

∂t
Ω̃s + D∗(Vs,h)D(Vs,h)(Ω̃s) = − (Ψ⊥,2(s)−Ψ⊥,2,∞) + ∂tGs (Ψ⊥,2,∞) ,

Ω̃0 = G0 (Ψ⊥,2,∞)
Now we define

Ωs = Ω̃s +Gs (−Ψ⊥,2,∞)
so that Ωs automatically satisfies the initial value equation

(5.81) ∂

∂t
Ωs + D∗(Vs,h)D(Vs,h)(Ωs) = −Ψ⊥,2(s).

Ω0 = 0
We also obtain an estimate of the form∥∥∥Ω̃s

∥∥∥
W4,p+1,,q,wε(s)(gΣ,h)

= ‖Ωs −Gs (−Ψ⊥,2,∞)‖W4,p+1,q,wε(s)(gk,1,∞)

≤ C ‖G0 (Ψ⊥,2,∞)‖L2
4p+2(gk,1,∞)

+C ‖− (Ψ⊥,2(s)−Ψ⊥,2,∞) + ∂tGs (Ψ⊥,2,∞)‖W4,p,,q,wε(s)(gk,1,∞)

= O(k1/2).

If we define Ω∞ to be the unique solution to

(5.82) D∗(V∞,h)D(V∞,h)(Ω∞) = −Ψ⊥,2,∞,

that is
Ω∞ = G∞ (−Ψ⊥,2,∞) ,

we have

‖Ωs − Ω∞‖W4,p+1,q,wε(s)(gk,1,∞)(5.83)

≤ ‖Ωs −Gs (−Ψ⊥,2,∞)‖W4,p+1,q,wε(s)(gk,1,∞) + ‖Gs (−Ψ⊥,2,∞)−G∞ (−Ψ⊥,2,∞)‖W4,p+1,q,wε(s)(gk,1,∞)

= O(k1/2).

In particular we get that Ωs converges to Ω∞ smoothly.
Formally, from equations 5.76 and 5.83, we also get equation 5.29:

(5.84) ∂ω̂k,2(s(t))
∂t

+ i∂̄J∂J (Scal (ω̂k,2(s(t)))) = O(k−3),

for all s ∈ [0, S].
We now define

H(ωk,2(s(t)))(5.85)
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= H(ω′′k,1(s(t)))− k−2
(
Ψ⊥,2(s) + D∗(Vs,h)D(Vs,h)(Ωs))

)
+ k−3LVs (Ωs) .

Then with this definition we also obtain equation 5.28, that is, for all s ∈ [0, S],

i∂Js∂Js (H(ωk,2(s(t))) = i∂Js∂Js

(
H(ω′′k,1(s(t)))

)
−k−2i∂Js∂Js

(
Ψ⊥,2(s) + D∗(Vs,h)D(Vs,h)(Ωs))

)
+k−3LVs (Ωs)

= rk−1
(
∂ω
′′
k,1(s(t))
∂s

+ LVs
(
ω
′′
k,2(s(t))

))
+ k−2∂Ωs

∂t
(5.86)

= rk−1

∂
(
ω
′′
k,1(s(t)) + k−2Ωs

)
∂s

+ LVs
(
ω
′′
k,2(s(t)) + k−2Ωs

)
= rk−1

(
∂ωk,2(s(t))

∂s
+ LVs (ωk,2(s(t))

)
.

In a similar way, we define

H(ωk,2,∞)(5.87)
= H(ω′′k,1,∞) + k−3LV∞ (Ω∞) ,

where
ωk,2,∞ = ω

′′
k,1,∞ + k−2i∂Js∂Js (Ω∞)

To finish the proof of Proposition 5.7 it remains to prove estimate 5.31, that is, we must estimate
the quantity

‖Scal (ωk,2(s(t))) +H(ωk,2(s(t))− (Scal (ωk,2,∞) +H(ωk,2,∞))‖W4,p,,q,wε(s)(gk,1,∞) .

Formally we have

Scal (ωk,2(s(t))) +H(ωk,2(s(t))

= Scal
(
ωFS(Pr−1)

)
+ k−1Scal (ωΣ) +

∑
l=3

k−l
(
Ψ(2)

Σ,l(s) + Ψ(2)
Φh,l(s) + Ψ(2)

⊥,l(s))
)

Scal (ωk,2,∞) +H(ωk,2,∞)

= Scal
(
ωFS(Pr−1)

)
+ k−1Scal (ωΣ) +

∑
l=3

k−l
(
Ψ(2)

Σ,l,∞ + Ψ(2)
Φh,l,∞ + Ψ⊥,l,∞

)
,

where Ψ(2)
Σ,l(s),Ψ

(2)
Φh,l(s),Ψ

(2)
⊥,l(s))Ψ

(2)
Σ,l,∞,Ψ

(2)
Φh,l,∞,Ψ

(2)
⊥,l,∞ are defined by these formulae, so that

Scal(ωk,2(s(t)) +H(ωk,2(s(t))− Scal(ωk,2(s(t))−H(ωk,2(s(t))

=
∑
l=3

k−l
(
(Ψ(2)

Σ,l(s)−Ψ(2)
Σ,l,∞) +

(
Ψ(2)

Φh,l(s)−Ψ(2)
Φh,l,∞

)
+
(
Ψ(2)
⊥,l(s))−Ψ(2)

⊥,l,∞

))
.(5.88)

5.4. The parabolic estimate. We may at last derive the estimate 5.31. Note that

Scal (ωk,2,∞)− Scal (ωk,2(s(t)))

= Scal
(
ωk,1,∞ + i∂J∞∂J∞Θ∞ + k−1i∂J∞∂J∞Ξ∞ + k−2i∂J∞∂J∞Ω∞)

)
−Scal

(
ωk,1(s) + i∂Js∂Js((Θ(s(t)−Θ∞) + Θ∞) + k−1i∂Js∂Js ((Ξ(s(t))− Ξ∞) + Ξ∞) + k−2i∂Js∂Js (Ω(s(t)− Ω∞) + Ω∞)

)
,

so by Lemma 2.7 (or more precisely its proof) we have

‖Scal (ωk,2(s(t)))− (Scal (ωk,2,∞))‖2W4,p,q−1,wε(s)(gk,l,∞)
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: =
∥∥∥∥∥
∞∑
l=1

k−l
(
(Ψ(2)

Σ,l(s)−Ψ(2)
Σ,l,∞) +

(
Ψ(2)

Φh,l(s)−Ψ(2)
Φh,l,∞

)
+
(
Ψ(2)
⊥,l(s))−Ψ(2)

⊥,l,∞

))∥∥∥∥∥
2

W4,p,q−1,wε(s)(gk,l,∞)

≤
∞∑
l=1

k−l
∥∥∥((Ψ(2)

Σ,l(s)−Ψ(2)
Σ,l,∞) +

(
Ψ(2)

Φh,l(s)−Ψ(2)
Φh,l,∞

)
+
(
Ψ(2)
⊥,l(s))−Ψ(2)

⊥,l,∞

))∥∥∥2

W4,p,q−1,wε(s)(gk,l,∞)

≤ C
∞∑
l=1

k−l
q∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∣∣∣∂jt (ωk,1,∞ − ωk,1(s))
∣∣∣∥∥∥2

L2
4(p+1−j)(gk,2,∞)

C
∞∑
l=1

k−l
q∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∣∣∣∂jt ((i∂J∞∂J∞ − i∂Js∂Js) (Θ∞ + Π∞ + Ω∞)
)∣∣∣∥∥∥2

L2
4(p+1−j)(gk,2,∞)

+C
∞∑
l=1

k−l
q∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∂jsa(1,0)
s

∥∥∥
L2

4(p+1−j)(g∞)
+
∥∥∥∂jsa(0,1)

s

∥∥∥
L2

4(p+1−j)(g∞)

C
∞∑
l=1

k−l
q∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∂js ((Θ(s(t)−Θ∞))
∥∥∥2

L2
4(p+1−j)(gk,2,∞)

+
∥∥∥∂js (a1,0

s ∧ a0,1
s

)∥∥∥2

L2
4(p+1−j)(gk,2,∞)

+C
∞∑
l=1

k−l
q∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∂js (Ξ(s(t))− Ξ∞)
∥∥∥2

L2
4(p+1−j)(gk,2,∞)

+
∥∥∥∂js (Ω(s(t)− Ω∞))

∥∥∥2

L2
4(p+1−j)(gk,2,∞)

≤ Cvol(P(E), gk,2,∞)
∞∑
l=1

k−l
q∑
j=0

� ∞
T
|wε(t)|2

∥∥∥(∣∣∣∂jt (ωk,1,∞ − ωk,1(s))
∣∣∣)∥∥∥2

C4(p+1−j)(gk,2,∞)

+Cvol(P(E), gk,2,∞)
∞∑
l=1

k−l
q∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∂jsa(1,0)
s

∥∥∥2

C4(p−j)(gk,2,∞)
+
∥∥∥∂jsa(0,1)

s

∥∥∥2

C4(p+1−j)(gk,2,∞)

+Cvol(P(E), gk,2,∞)
∞∑
l=1

k−l
q∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∂js (a1,0
s ∧ a0,1

s

)∥∥∥2

C4(p−j)(gk,2,∞)

+C
∞∑
l=1

k−l
q−1∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∂js ((Ψ̂Σ,2(s(t)− Ψ̂Σ,2,∞
))∥∥∥2

L2
4(p−j)(gk,2,∞)

C
∞∑
l=1

k−l
q−1∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∂js(i(β(s)− β∞) + ∂s (Gs(iβ∞))− gS(s) ·∆As(ηs))
∥∥∥
L2

4(p−j)(gΣ,h)

+C
∞∑
l=1

k−l
q−1∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∂js(Gs(iβ∞)−G∞(iβ∞) + gS(s) · ηs)
∥∥∥
L2

4(p−j)(gΣ,h)

+C
∞∑
l=1

k−l
q−1∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∂js(− (Ψ⊥,2(s)−Ψ⊥,2,∞) + ∂sGs (Ψ⊥,2,∞))
∥∥∥
L2

4(p−j)(gk,2,∞)

+C
∞∑
l=1

k−l
q−1∑
j=0

� ∞
T
|wε(t)|

∥∥∥∂js(Gs (−Ψ⊥,2,∞)−G∞ (−Ψ⊥,2,∞))
∥∥∥
L2

4(p−j)(gk,2,∞)

+C
∞∑
l=1

k−l ‖Θ∞‖L2
4p+2(gk,2,∞) + ‖G0(iβ∞)‖L2

4p+2(gΣ,h) + ‖G0 (Ψ⊥,2,∞)‖L2
4p+2(gk,1,∞)

= C
∞∑
l=1

k−l+1/2 + C
∞∑
l=1

k−lvol(P(E), gk,2,∞)
(
‖Θ∞‖C4p+2(gk,2,∞) + ‖G0 (Ψ⊥,2,∞)‖C4p+2(gk,2,∞)

)
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+C
∞∑
l=1

k−lvol(P(E), gk,2,∞) ‖G0(iβ∞)‖C4p+2(gΣ,h)

+C
∞∑
l=1

k−lvol(P(E), gk,2,∞)
q−1∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∂js ((Ψ̂Σ,2(s(t)− Ψ̂Σ,2,∞
))∥∥∥2

C4(p−j)(gk,2,∞)

+C
∞∑
l=1

k−lvol(P(E), gk,2,∞)
q−1∑
j=0

� ∞
T

∥∥∥∂js(− (Ψ⊥,2(s)−Ψ⊥,2,∞) + ∂sGs (Ψ⊥,2,∞))
∥∥∥
C4(p−j)(gk,2,∞)

+C
∞∑
l=1

k−lvol(P(E), gk,2,∞)
q−1∑
j=0

� ∞
T
|wε(t)|2

∥∥∥∂js(Gs(iβ∞)−G∞(iβ∞) + gS(s) · ηs)
∥∥∥
C4(p−j)(gΣ,h)

+C
∞∑
l=1

k−lvol(P(E), gk,2,∞)
q−1∑
j=0

� ∞
T
|wε(t)|2 ‖i(β(s)− β∞) + ∂s (Gs(iβ∞)− gS(s) ·∆As(ηs))‖C4(p−j)(gΣ,h)

+C
∞∑
l=1

k−lvol(P(E), gk,2,∞)
q−1∑
j=0

� ∞
T
|wε(t)|

∥∥∥∂js(Gs (−Ψ⊥,2,∞)−G∞ (−Ψ⊥,2,∞))
∥∥∥
C4(p−j)(gk,2,∞)

= O(k1/2),

where we have used the inequalities 5.38, 5.61, 5.83 and Lemma 4.16, and the fact that by Lemmas
4.14 and 4.20, the constant appearing above is independent of k. Note also that Lemmas 4.14 and
4.20 work just as well for the metrics gk,2,∞ as for gk,2,∞. Note also that by Lemma 4.13, we have∥∥∥Ψ(2)

Σ,l(s)−Ψ(2)
Σ,l,∞

∥∥∥
W4,p,,q−1,wε(s)(gk,1,∞)

≤ O(k1/2),∥∥∥Ψ(2)
Φh,l(s)−Ψ(2)

Φh,l,∞

∥∥∥
W4,p,,q−1,wε(s)(gk,1,∞)

≤ O(k1/2),∥∥∥Ψ(2)
⊥,l(s))−Ψ(2)

⊥,l,∞

∥∥∥
W4,p,,q−1,wε(s)(gk,1,∞)

≤ O(k1/2).

By construction, we have that

H(ωk,2(s(t)) = k−1(2rΦh(ΛωΣFAs))− k−2
(
Ψ⊥,2(s) + Ψ̂Σ,2(s) + ΨΦh,l(s)

)
−rk−2Φh(i∆AEndEs

(ηs) + 2∆ωΣΘ(w) · ΛωΣFAs)− 2ΛωΣFAs ◦ ηs)

−k−2
(
D∗ωΣDωΣΘ(w) + D∗(Vs,h)D(Vs,h)(Ωs))

)
+k−3LVs (Ωs)

+2rk−1Φh(ΛωΣFAs)
∞∑
i=2

(−1)ik−i (Φh(ηs))i

+rk−2Φh

(
∂ηs
∂s

+ 2ΛωΣFAs ◦ ηs
) ∞∑
i=1

(−1)ik−i (Φh(ηs))i ,

and also

H(ωk,2,∞) = k−1(2rΦh(ΛωΣFA∞))− k−2
(
Ψ⊥,2,∞ + Ψ̂Σ,2,∞ + ΨΦh,l,∞

)
−rk−2Φh(i∆AEndE∞

(η∞) + 2∆ωΣΘ∞ · ΛωΣFA∞)− 2ΛωΣFA∞ ◦ η∞)

−k−2
(
D∗ωΣDωΣΘ∞ + D∗(V∞,h)D(V∞,h)(Ω∞))

)
+k−3LV∞ (Ω∞)
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+2rk−1Φh(ΛωΣFA∞)
∞∑
i=2

(−1)ik−i (Φh(η∞))i

+rk−2Φh (2ΛωΣFA∞ ◦ η∞)
∞∑
i=1

(−1)ik−i (Φh(η∞))i

Then in the same way, applying Lemmas 4.15, 4.10, and 5.5, as well as the inequalities 5.38, 5.61,
5.83, we obtain that

‖H(ωk,2(s(t))−H(ωk,2,∞)‖W4,p,q−1,wε(s)(gk,2,∞)

: =
∥∥∥∥∥∑
l=1

k−l
(
(Ψ(2)

Σ,l(s)−Ψ(2)
Σ,l,∞) +

(
Ψ(2)

Φh,l(s)−Ψ(2)
Φh,l,∞

)
+
(
Ψ(2)
⊥,l(s))−Ψ(2)

⊥,l,∞

))∥∥∥∥∥
W4,p,q−1,wε(s)(gk,1,∞)

≤
∑
l=1

k−l
∥∥∥(Ψ(2)

Σ,l(s)−Ψ(2)
Σ,l,∞) +

(
Ψ(2)

Φh,l(s)−Ψ(2)
Φh,l,∞

)
+
(
Ψ(2)
⊥,l(s))−Ψ(2)

⊥,l,∞

)∥∥∥
W4,p,q−1,wε(s)(gk,1,∞)

= O(k1/2).

We note that by Lemma 4.13 we also obtain∥∥∥Ψ(2)
Σ,l(s)−Ψ(2)

Σ,l,∞

∥∥∥
W4,p,q−1,wε(s)(gk,1,∞)

≤ O(k1/2),∥∥∥Ψ(2)
Φh,l(s)−Ψ(2)

Φh,l,∞

∥∥∥
W4,p,q−1,wε(s)(gk,1,∞)

≤ O(k1/2),∥∥∥Ψ(2)
⊥,l(s))−Ψ(2)

⊥,l,∞

∥∥∥
W4,p,q−1,wε(s)(gk,1,∞)

≤ O(k1/2).

We then have

‖Scal (ωk,2(s(t))) +H(ωk,2(s(t))− (Scal (ωk,2,∞) +H(ωk,2,∞))‖W4,p,q−1,wε(s)(gk,l,∞)

=
∥∥∥∥∥∑
l=3

k−l
(
(Ψ(2)

Σ,l(s)−Ψ(2)
Σ,l,∞) +

(
Ψ(2)

Φh,l(s)−Ψ(2)
Φh,l,∞

)
+
(
Ψ(2)
⊥,l(s))−Ψ(2)

⊥,l,∞

))∥∥∥∥∥
W4,p,,q−1,wε(s)(gk,1,∞)

≤
∞∑
l=3

k−l
(∥∥∥Ψ(2)

Σ,l(s)−Ψ(2)
Σ,l,∞

∥∥∥
W4,p,,q−1,wε(s)(gk,1,∞)

+
∥∥∥Ψ(2)

Φh,l(s)−Ψ(2)
Φh,l,∞

∥∥∥
W4,p,,q−1,wε(s)(gk,1,∞)

)

+
∞∑
l=3

k−l
∥∥∥Ψ(2)
⊥,l(s))−Ψ(2)

⊥,l,∞

∥∥∥
W4,p,,q−1,wε(s)(gk,1,∞)

+
∥∥∥Ψ(2)

Σ,l(s)−Ψ(2)
Σ,l,∞

∥∥∥
W4,p,,q−1,wε(s)(gk,1,∞)

+
∑
l=3

k−l +
∥∥∥Ψ(2)

Φh,l(s)−Ψ(2)
Φh,l,∞

∥∥∥
W4,p,,q−1,wε(s)(gk,1,∞)

+
∥∥∥Ψ(2)
⊥,l(s))−Ψ(2)

⊥,l,∞

∥∥∥
W4,p,,q−1,wε(s)(gk,1,∞)

= O(k−5/2),

for each l, where we use the previous calculations, and also Equation 5.88. Finally, again by Lemma
4.13 we obtain that ∥∥∥Ψ(2)

Σ,l(s)−Ψ(2)
Σ,l,∞

∥∥∥
W4,p,,q−1,wε(s)(gk,1,∞)

≤ O(k1/2),∥∥∥Ψ(2)
Φh,l(s)−Ψ(2)

Φh,l,∞

∥∥∥
W4,p,,q−1,wε(s)(gk,1,∞)

≤ O(k1/2),∥∥∥Ψ(2)
⊥,l(s))−Ψ(2)

⊥,l,∞

∥∥∥
W4,p,,q−1,wε(s)(gk,1,∞)

≤ O(k1/2).

�
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5.5. The proof of Theorem 5.1. Now we spell out how to iterate the above process to obtain
an approximate solution to Calabi flow for all orders.

Proof. The proof will be by induction on l. The results of the two preceding subsections give
Theorem 5.1 for l = 1 and 2. We simply iterate the procedure of the procedure, of the last subsection
used to go from l = 1 to l = 2, which applies almost unchanged.

Suppose the result is true for l, that is, suppose that we have functions

Θk,m(s(t)),Ξk,m(s(t)), and Ωk,m(s(t))

for every 1 ≤ m ≤ l−1, as in Theorem 5.1, so that in particular we may assume the existence of the
the metrics ωk,m+1(s(t)) and the functions H(ωk,m+1(s(t)) (and in particular the metric ωk,l(s(t))),
as well as the fact that the functions defined by

Scal (ωk,m+1(s(t))) +H(ωk,m+1(s(t))

= Scal
(
ωFS(Pr−1)

)
+ k−1Scal (ωΣ)(5.89)

+
∑

M=m+2
k−M (Ψ(m+1)

Σ,M (s) + Ψ(m+1)
Φh,M (s) + Ψ(m+1)

⊥,l (s))

Scal (ωk,m+1,∞) +H(ωk,m+1,∞)

= Scal
(
ωFS(Pr−1)

)
+ k−1Scal (ωΣ)(5.90)

+
∑

M=m+2
k−M (Ψ(m+1)

Σ,M,∞ + Ψ(m+1)
Φh,M,∞ + Ψ(m+1)

⊥,M,∞)

satisfy the bounds ∥∥∥Ψ(m+1)
Σ,M (s)−Ψ(m+1)

Σ,M,∞

∥∥∥
W4,p,q,wε(s)(gk,1,∞)

= O(k1/2)∥∥∥Ψ(m+1)
Φh,M (s)−Ψ(m+1)

Φh,M,∞

∥∥∥
W4,p,q,wε(s)(gk,1,∞)

= O(k1/2)(5.91) ∥∥∥Ψ(m+1)
⊥,M (s))−Ψ(m+1)

⊥,M,∞

∥∥∥
W4,p,q,wε(s)(gk,1,∞)

= O(k1/2),

as in the case of l = 2 for which these facts are precisely equations 5.27, 5.30, of Proposition 5.7 in
the previous section. In particular we may assume this this is true for m = l− 1. We will show the
existence of functions

Θk,l(w(t)),Ξk,l(s(t)), and Ωk,l(s(t)),

such that the metric ωk,l+1(s(t)) defined in Theorem 5.1 achieves the desired result.
First, we define paths of functions

Θ̃k,l(w(t)), and Ω̃k,l(s(t))

and a path of endomorphisms η̃s,l as follows.
We define Θ̃k,l(w(t)) to be the solution to the initial value problem

∂Θ̃k,l(w(t))
∂w

+ D∗ωΣDωΣΘ̃k,l(w(t)) = −
(
Ψ̂(l)

Σ,l+1(s)− Ψ̂(l)
Σ,l+1,∞

)
(5.92)

Θ̃k,l(0) = −Θk,l,∞,

where Θk,l,∞ solves the elliptic equation

(5.93) D∗ωΣDωΣΘk,l,∞ = −Ψ̂(l)
Σ,l+1,∞.
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This solution exists by the parabolic Sobolev bound on Ψ̂(l)
Σ,l+1(s) − Ψ̂(l)

Σ,l+1,∞, which has been
assumed, and the fact that by construction

Ψ̂(l)
Σ,l+1(s)− Ψ̂(l)

Σ,l+1,∞, Ψ̂
(l)
Σ,l+1,∞

are orthogonal to
kerDΣDΣ = R.

Now we define Θk,l(w(t)) by

(5.94) Θk,l(w(t)) = Θ̃k,l(w(t)) + Θk,l,∞,

This in particular forces Θk,l(w(t)) to solve the intial value problem
∂Θk,l(w(t))

∂w
+ D∗ωΣDωΣΘk,l(w(t)) = −Ψ̂(l)

Σ,l+1(s)(5.95)

Θk,l(0) = 0.

The parabolic Sobolev theory will imply that

Θk,l(w(t))→ Θk,l,∞

in C∞, just as in the previous subsection, and that there is a bound

(5.96) ‖Θk,l(w(t))−Θk,l,∞‖W4,p,q,wε(s)(gk,1,∞) =
∥∥∥Θ̃k,l(w(t))

∥∥∥
W4,p,q,wε(s)(gk,1,∞)

= O(k1/2).

Next we define η̃s,l to be the solution to the initial value problem
∂η̃s,l
∂s

+ ∆AEndEs
(η̃s,l) = −i(βl(s)− βl,∞) + ∂s (Gs(iβl,∞))− gS(s) ·∆As(ηsl)(5.97)

η̃0,l = G0(iβl,∞),

where if

(5.98) Φh (2rαl(s)) = Ψ(l)
Φh,l+1(s),

we have
−∆ωΣΘk,l(w(t)) · ΛωΣFAs + αl(s) = βl(s) +

∑
j

cj,l(s)IdQj ,

where
∑
i cj,l(s)IdQj is the projection onto ker ∆AEndE∞

= Cl, ηs,l is defined to be the solution the
system of ordinary differential equations

dηs,l
dt

= −i
∑
j

cj,l(s)IdQj

η0,l = 0,

for all time, and gS(s) is a cut-off function which vanishes on [2S,∞) and gS(s) ≡ 1 on [0, 2S].
Note that

βl(s) ⊥ ker ∆AEndEs

for each s with respect to the metric, and Gs(iβl,∞) is the Green’s operator for ∆AEndEs
applied to

iβl,∞, which is defined to be the part of

−∆ωΣΘk,l,∞ · ΛωΣFA∞ + αl,∞

orthogonal to ker ∆AEndEs
, which therefore enjoys the property

iβl,∞ ⊥ ker ∆AEndEs
,

for all s, since C · IdE = ∆AEndEs
⊂ ker ∆AEndE∞

.
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Just as in Step 2 of the previous subsection, we will be able to use all of this information to
conclude that the right hand side of the above equation lies in the appropriate parabolic Sobolev
space, and is orthogonal to ker ∆AEndE∞

(and therefore to ∆AEndEs
) for all sufficiently large s, so that

the solution therefore exists for all time, and satisfies the corresponding parabolic estimate. We
may therefore define

(5.99) ηs,l = η̃s,l +Gs(−iβl,∞) + gS(s) · ηs,l,

so that by construction
∂ηs,l
∂s

+ ∆AEndEs
(ηs,l) = −iβl(s) + ∂

∂s

(
gS(s) · ηs,l

)
,(5.100)

η0,l = 0,

Here again we note that the right hand side of this equation is equal to ∆ωΣΘk,l,∞ ·ΛωΣFA∞ +αl,∞
for s ∈ [0, S].

We use this solution to define the function

(5.101) Ξk,l(s(t)) = −
∞∑
i=1

k−(i−1) (Φh (iηs,l))i ,

so that if we define

(5.102) hηs,l = h+ k−lh · ηs,l,

we have

(5.103) ωk(hηs,l , Js) = ωk(h, Js) + k−li∂Js∂Js (Ξk,l(s(t))) .

By the parabolic theory, ηs will converge smoothly, and therefore Ξk,l(s(t)) also converges smoothly
to some smooth function

Ξk,l,∞
and again the parabolic theory implies a bound of the form

(5.104) ‖Ξk,l(s(t))− Ξk,l,∞‖W4,p,q,wε(s)(gk,1,∞) = O(k1/2).

Finally we define Ω̃k,l(s(t)) to be the solution to the initial value problem
∂

∂t
Ω̃k,l(s(t)) + D∗(Vs,h)D(Vs,h)(Ω̃k,l(s(t)))

= −
(
Ψ(l)
⊥,l+1(s)−Ψ(l)

⊥,l+1,∞

)
+ ∂tGs

(
Ψ(l)
⊥,l+1,∞

)
,(5.105)

Ω̃k,l(0) = G0(Ωk,l,∞),

where Gs is the Green’s operator associated to D∗(Vs,h)D(Vs,h) and Ωk,l,∞ is the solution to the
elliptic equation

(5.106) D∗(V∞,h)D(V∞,h) (Ωk,l,∞) = −Ψ(l)
⊥,l+1,∞,

where again one proves exactly as in Step 3 of the previous subsection that the right hand side is
the Sobolev space and orthogonal with respect to gk,1,∞ to kerD∗(Vs,h)D(Vs,h) for all s, and so the
solution exists for all time. Now we may define

(5.107) Ωk,l(s(t)) = Ω̃k,l(s(t)) +Gs
(
−Ψ(l)

⊥,l+1,∞

)
,

which therefore solves the the initial value equation
∂

∂t
Ωk,l(s(t)) + D∗(Vs,h)D(Vs,h)(Ωk,l(s(t))) = −Ψ⊥,l+1(s),(5.108)
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Ωk,l(0) = 0.

This solution will converge smoothly to Ωk,l,∞, and the parabolic theory will imply the Sobolev
bound

‖Ωk,l(s(t))− Ωk,l,∞‖W4,p,q,wε(s)(gk,1,∞) = O(k1/2).
Now we may define the one parameter family metrics

ωk,l+1(s(t))(5.109)
= ωk,l(s(t)) + k−(l−1)i∂Js∂Js (Θk,l(w(t))) + k−li∂Js∂Js (Ξk,l(s(t))) + k−(l+1)i∂Js∂Js (Ωk,l(s(t))) .

All the calculations of the preceeding subsection apply verbatim to this construction, the only
difference being the correction potentials eliminate the terms

Ψ(l)
Σ,l+1(s),Ψ(l)

Φh,l+1(s),Ψ(l)
⊥,l+1(s),

because we have increased l, so that we formally obtain

Scal (ωk,l+1(s(t))) +H(ωk,l(s(t))(5.110)

= Scal
(
ωFS(Pr−1)

)
+ k−1Scal (ωΣ)

+
∑

M=l+2
k−M (Ψ(l+1)

Σ,M (s) + Ψ(l+1)
Φh,M (s) + Ψ(l+1)

⊥,M (s)),

where the function H(ωk,l+1(s(t)) is constructed from H(ωk,l(s(t)) in a completely analogous man-
ner to the way H(ωk,2(s(t)) was constructed from H(ωk,1(s(t)), and by definition we have for
s ∈ [0, S]

(5.111) rk−1
(
∂ωk,l+1(s)

∂s
+ LVsωk,l+1(s)

)
= i∂̄Js∂JsH(ωk,l+1(s)),

and precisely the same arguments apply to the solutions of the elliptic equations so that we may
define ωk,l+1,∞ analogously, and we have formally

Scal (ωk,l+1,∞) +H(ωk,l+1,∞)(5.112)

= Scal
(
ωFS(Pr−1)

)
+ k−1Scal (ωΣ)

+
∑

M=l+2
k−M (Ψ(l+1)

Σ,M,∞ + Ψ(l+1)
Φh,M,∞ + Ψ(l+1)

⊥,M,∞(s)),

and by construction ωk,l+1(s(t))→ ωk,l+1,∞.
Moreover we may write

H(ω′′k,l+1,∞) = 2rk−1Φh

ΛωΣF
◦
A∞ −

⊕
j

l+1∑
q=2

kq−1

2 cj,q,∞

 IdQj
+O(k−2).

Precisely the same calculations used previously, using the Sobolev bounds on

Θk,l(w(t))−Θk,l,∞,Ξk,l(s(t))− Ξk,l,∞, and Ωk,l(s(t))− Ωk,l,∞

apply to give the Sobolev bounds∥∥∥Ψ(l+1)
Σ,M (s)−Ψ(l+1)

Σ,M,∞

∥∥∥
W4,p,q,wε(s)(gk,1,∞)

= O(k1/2)∥∥∥Ψ(l+1)
Φh,M (s)−Ψ(l+1)

Φh,M,∞

∥∥∥
W4,p,q,wε(s)(gk,1,∞)

= O(k1/2)(5.113) ∥∥∥Ψ(l+1)
⊥,M (s))−Ψ(l+1)

⊥,M,∞

∥∥∥
W4,p,q,wε(s)(gk,1,∞)

= O(k1/2)
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for all M ≥ l + 2, and therefore

‖Scal (ωk,l+1(s(t))) +H(ωk,l+1(s(t))− (Scal (ωk,l+1,∞) +H(ωk,l+1,∞))‖W4,p,,q,wε(s)(gk,1,∞)

= O(k−(l+1+1/2).

Finally we remark that Equation 5.11 also follows since the only facts we have used that involved the
metric gk,l+1,∞ are the parabolic estimates (which are valid for any metric), the Sobolev embedding
theorem Lemma 5.8 in [F], which is actually stated explicitly for gk,l+1,∞ for any l, and Lemma
4.15, which one can easily check by examining the proof, as well as the results used therein, that
this lemma is equally valid for the metrics gk,l+1,∞ for each l, and so the equation follows with
exactly the same proof. We have therefore proven that the result holds for l + 1 and completing
the proof of the theorem, by induction. �

6. Inverse function theorem argument

6.1. Strategy of the proof. We wish to find a path ω̂t of smooth metrics solving the Calabi flow
equation

∂ω̂t
∂t

+ i∂J∂JScal(ω̂t) = 0,

For the one parameter family (depending on S) of paths of metrics ω̂Sk,l(s(t)) provided by Theorem
5.1, where s = rt/k we have that

∂ω̂Sk,l(s(t))
∂t

+ i∂J∂JScal(ω̂Sk,l(s(t))) = i∂J∂J σ̂
S
k,l(s),

where σ̂Sk,l(s) = g̃∗s(σSk,l(s)) and σSk,l(s) satisfies a uniform estimate of the form∣∣∣σSk,l(s)∣∣∣ ≤ Ck−(l+1),

on the interval [0, S] (where we may take S to be as large as we like by modifying the cut-off
function which introduced this parameter).

Note that since ωk(ht, J) and ωk(h, J) are cohomologous for all t, by the ∂∂ lemma and the
statement of Theorem 5.1, we may write ω̂Sk,l(s(t)) = ωk(h, J)+ i∂J∂J ϕ̂

S
k,l(s) for a family of smooth

functions ϕ̂k,l(t), this is equivalent to an equation of the form

∂ϕ̂Sk,l(t)
∂t

+ Scal(ω̂Sk,l(t)) = σ̂Sk,l(t)

By construction
∂ω̂k,l(s(t))

∂t
= i∂J∂JH (ω̂k,l(s(t))) ,

which implies
i∂J∂J

(
∂

∂t
ϕ̂k,l(s(t))

)
= i∂J∂JH (ω̂k,l(s(t))) ,

so by possibly adding a constant to ϕ̂k,l(s(t)), we may assume

(6.1) ∂

∂t
ϕ̂k,l(s(t)) = H (ω̂k,l(s(t))) ,

or

(6.2) rk−1
(
∂ϕk,l(s)
∂s

+ LVs (ϕk,l(s))
)

= H (ωk,l(s))

and therefore we may write

Scal (ωk,l(s(t))) +H (ωk,l(s(t))) = σk,l(s).
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In precisely the same way we may write

Scal (ωk,l,∞) +H (ωk,l,∞) = σk,l,∞,

where σk,l(s) converges smoothly to a function σk,l,∞. By Theorem 5.1 this implies a parabolic
Sobolev bound:

‖σk,l(s)− σk,l,∞‖W4,p,,q,wε(s)(gk,l,∞) ≤ Ck
−(l+1/2).

If we can find a path of smooth functions φ(s(t)) and a smooth function φ∞ such that such that
(6.3)
Scal

(
ωk,l(s(t)) + i∂Js∂Js(φ(s(t)) + φ∞)

)
+H (ωk,l(s(t)))+rk−1

(
∂

∂s
(φ(s(t))) + LVs (φ(s(t)) + φ∞)

)
= 0,

where Vs is the infinitesimal generator of the path of diffemorphisms g̃s, then

ω̂(s(t)) = g̃∗s

(
ωk,l(s(t)) + i∂Js∂Js(φ(s(t)) + φ∞)

)
= ω̂k,l(s(t)) + i∂J∂J(φ̂(s(t)) + φ̂∞)(6.4)

= ωk(h, J) + i∂J∂J
(
ϕ̂k,l(s(t)) + φ̂(s(t)) + φ̂∞

)
,

solves Calabi flow:

Scal
(
ωk(h, J) + i∂J∂J

(
ϕ̂k,l(s(t)) + φ̂(s(t)) + φ̂∞

))
+ ∂

∂t

(
ϕ̂k,l(s(t)) + φ̂(s(t)) + φ̂∞

)
= Scal (ω̂(s(t))) + ∂

∂t

(
ϕ̂k,l(s(t)) + φ̂(s(t))

)
= Scal (ω̂(s(t))) +H (ω̂k,l(s(t))) + ∂

∂t

(
φ̂(s(t)) + φ̂∞)

)
= 0.

The idea then is to perturb the approximate solution ϕk,l(s) to a genuine solution by adding a
potential of the form φ(s(t)) + φ̂∞. We will do this via an implicit function theorem argument. For
φ(s(t)) ∈ W 0

4,p+1,q,wε(s)(gk,l,∞), we have by definition that φ(s(t)) → 0 as s → 0 in L2
4(p+1)(gk,l,∞),

so that for any φ∞ ∈ L2
4(p+1)(gk,l,∞),

φ(s(t)) + φ∞ → φ∞

in L2
4(p+1)(gk,l,∞). Then we may consider the Calabi maps

(6.5) Ck,l : W 0
4,p+1,q,wε(s)(gk,l,∞)× L2

4(p+1)(gk,1,∞)→W4,p,q,wε(s)(gk,l,∞)× L2
4p(gk,l,∞)

(6.6) (φ(s(t)), φ∞) 7→ (τk,l (φ(s(t)), φ∞) , κk,l(φ∞)),

where

τk,l (φ(s(t)), φ∞)(6.7)

= Scal
(
ωk,l(s(t)) + i∂Js∂Js (φ(s(t)) + φ∞)

)
+H (ωk,l(s(t))) + rk−1

(
∂

∂s
φ(s(t)) + LVs (φ(s(t)) + φ∞)

)
−
(
Scal

(
ωk,l,∞ + i∂J∞∂J∞φ∞

)
+H(ωk,l,∞

)
+ rk−1LV∞φ∞),

and

(6.8) κk,l(φ∞) = Scal
(
ωk,l,∞ + i∂J∞∂J∞φ∞

)
+H(ωk,l,∞) + rk−1LV∞φ∞.

and where ε > 1/2.
We will now slightly rewrite these operators in a more familiar form. Recalling that

V∞ = X−iΛωΣFA∞
= ∇gk,1,∞Φh (−ΛωΣFA∞) ,
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XΛωΣFA∞
= J∞∇gk,1,∞Φh (−ΛωΣFA∞) = J∞V∞,

so that Φh (−ΛωΣFA∞) is in particular a Hamiltonian for the Hamiltonian vector field XΛωΣFA∞
with respect to ωk,1,∞.

By definition we have that

ωk,l,∞ = ωk,1,∞ + i∂J∞∂J∞(ϕk,l,∞ − ϕk,1,∞),

so that by Lemma 2.4 and the limit of equation 6.1 as s→∞, for l ≥ 2 we may write:

rk−1HJ∞V∞ (ωk,l,∞) = rk−1Φh (−ΛωΣFA∞)− rk−1

2 L∇gk,1,∞Φh(−ΛωΣFA∞)(ϕk,l,∞ − ϕk,1,∞)

= rk−1Φh (−ΛωΣFA∞)− 1
2H(ωk,l,∞) + rk−1Φh (ΛωΣFA∞)

= −1
2H(ωk,l,∞),

where HJ∞V∞ (ωk,l,∞) is a Hamiltonian function for XΛωΣFA∞
= J∞V∞ with respect to metric

ωk,l,∞. In other words the function H(ωk,l,∞) is in fact −2 times this Hamiltonian function.
We therefore obtain

κk,l(φ∞) = Scal
(
ωk,l,∞ + i∂J∞∂J∞φ∞

)
− 2rk−1

(
HJV∞ (ωk,l,∞)− 1

2L∇gk,1,∞Φh(−ΛωΣFA∞) (φ∞)
)

= Scal
(
ωk,l,∞ + i∂J∞∂J∞φ∞

)
−
(

Φh (ΛωΣFA∞)− 1
2L∇gk,1,∞Φh(−ΛωΣFA∞) (ϕk,l,∞ − ϕk,1,∞ + φ∞)

)
= Scal

(
ωk,l,∞ + i∂J∞∂J∞φ∞

)
− 2rk−1

(
HJ∞V∞

(
ωk,1,∞ + i∂J∞∂J∞ (ϕk,l,∞ − ϕk,1,∞ + φ∞)

))
= Scal

(
ωk,l,∞ + i∂J∞∂J∞φ∞

)
− 2rk−1

(
HJ∞V∞

(
ωk,l,∞ + i∂J∞∂J∞φ∞

))
,

and also

τk,l (φ(s(t)), φ∞)

= Scal
(
ωk,l(s(t)) + i∂Js∂Js (φ(s(t)) + φ∞)

)
+H (ωk,l(s(t))) + rk−1

(
∂

∂s
φ(s(t)) + LVs (φ(s(t)) + φ∞)

)
−
(
Scal

(
ωk,l,∞ + i∂J∞∂J∞φ∞

)
− 2rk−1HJ∞V∞

(
ωk,l,∞ + i∂J∞∂J∞φ∞

))
.

Notice that the operator κk,l is precisely the extremal metric operator (see equation 2.5) for the
vector field

−2rk−1J∞V∞ = 2rk−1J∞∇gk,1,∞Φh(ΛωΣFA∞).
These maps are well-defined and differentiable on the spaceW 0

4,p+1,q,wε(t) (gk,l,∞)×L2
4(p+1) (gk,l,∞)

for all sufficiently large p by Lemma 2.7. The equation

(6.9) Ck,l ((φ(s(t)), φ∞)) = 0

implies that
ω̂(t) = ω̂k,l(s(t)) + i∂J∂J(φ̂(s(t) + φ̂∞)

solves Calabi flow, by the above discussion, assuming we can actually take φ(s(t)) + φ̂∞ to be
smooth.

By the previous discussion, there is also a pointwise uniform bound

|Ck,l(0)| ≤ Ck−(k+1).

In fact, by Theorem 5.1

‖Ck,l(0)‖W4,p,q,wε(t)(gk,l,∞)×L2
4p(gk,l,∞)(6.10)
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= ‖σk,l(s)− σk,l,∞‖W4,p,q,wε(s)(gk,1,∞)×L2
4p(gk,1,∞)

≤ Ck−(l+1/2),

for all p,q, and ε.
We would like to use a quantitative version of the inverse function theorem to find an exact

solution to equation 6.9 and therefore to Calabi flow. Unfortunately, the linearisation of the scalar
curvature involves the Lichnerowicz operators of the metrics ωk,l(s(t)) and ωk,l,∞ (see Lemmas 2.5
and 2.7 and formula 6.21 below) which have kernels isomorphic to R and Rm+1 by Lemmas 4.3
and 4.8. Because of this, we will not be able to solve Equation 6.9. Rather we will solve a modified
version of this equation for an entire one parameter family of operators CSk,l (to be defined below)
for which a solution to

(6.11) CSk,l (φ(s(t)), φ∞) = 0,

will give a solution to Equation 6.3 up to time S. Since we will solve this equation for every time
S, we will therefore obtain a solution to Equation 6.3 and therefore to Calabi flow on the original
manifold (P(E), J) for all time.

Note that this problem is already present in Brönnle’s solution to the (elliptic) extremal metric
problem, that is the equation

κk,l(φ∞) = 0.

To find the extremal metric on P(E∞) Brönnle modifies the vector field J∞V∞ by a vertical vector
field induced by a block-diagonal endomorphism, the Hamiltonian of which kills the orthogonal
projection onto kerD∗(ωk,1(J∞,h))D(ωk,1(J∞,h))|C∞(X,R), allowing him to carry out the perturbation.
We will follow his method exactly for the component the second (non-time dependent) component
κk,l of our map (since this is exactly the same as Brönnle’s map). The time dependent com-
ponent τk,l is slightly trickier to deal with. We need to redefine it so that it accomplishes four
things at once. First of all we need it to get rid of all the kernels involved. We will accom-
plish this for kerD∗(ωk,1(Js,h))D(ωk,1(Js,h))|C∞(X,R) by adding a term given by the projection onto
this component. Since this is constant for all s, this term will be zero after we take i∂Js∂Js . For
kerD∗(ωk,1(J∞,h))D(ωk,1(J∞,h))|C∞(X,R) we accomplish this by defining the part of τk,l that is not time-
dependent to be exactly the same as (the modified) κk,l, which also means that if κk,l vanishes, τk,l
is purely time dependent, as before. Therefore, secondly we must arrange that the time dependent
part converges to κk,l at an appropriate rate so that τk,l still gives a map between the parabolic
Sobolev spaces. Thirdly, we need to know that the vanishing of the (modified) κk,l and τk,l together
(in other words of CSk,l for every S ≥ 0) implies the existence of a solution to Equation 6.3. Finally,
we need to know that the analogue of inequality 6.10 will still be satisfied. This last point will follow
from any reasonable definition, and there is essentially only one way to acheive the first point (that
is, by following Brönnle’s method). To acheive points two and three simultaneously, we will use
a cut-off function (which is where S appears) so that at infinity the time dependent part of τk,l
converges to the time independent part, but up to time S it remains unchanged, so we also acheive
the third point above (but only up to time S). This is why we are required to solve our equation
for an entire one parameter family of operators, rather than a single operator as one does in the
elliptic case.

We will start by setting up the definition of the operators CSk,l. In order to deal with the kernels
mentioned above, we will adopt Bronnle’s framework from [B], to modify the non-time-dependent
part κk,l of Ck,l, and then we will modify the time-dependent part τk,l of Ck,l accordingly.
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Namely, recall that by Lemma 4.8 any element of kerD∗(ωk,1(J∞,h))D(ωk,1(J∞,h))|C∞(X,R) will be
equal to

Φh(⊕jθjIdQj ),
with θj ∈ iR, and these functions are precisely the (real-valued) Hamiltonians for the vector fields

Xθ := X⊕jθjIdQj = J∞∇gk,1,∞Φh(⊕jθjIdQj ).

We will write λ◦j for the eigenvalues of ΛωΣF
◦
A∞ , and

ϑj := λ◦jθj ,

and similarly
Xϑ := X⊕jϑjIdQj

Again, because
ωk,l,∞ = ωk,1,∞ + i∂j∞∂J∞ (ϕk,l,∞ − ϕk,1,∞) ,

where the difference ϕk,l,∞ − ϕk,1,∞ satisfies by construction the property

LXϑ (ϕk,l,∞ − ϕk,1,∞) = 0,

then by Lemma 2.4, if we set ϑ = (ϑ1, · · · , ϑm), the functions

HXϑ(ωk,l,∞) := Φh(⊕jϑjIdQi)−
1
2gk,1,∞

(
∇gk,1,∞Φh(⊕jϑjIdQi),∇gk,1,∞ (ϕk,l,∞ − ϕk,1,∞)

)
= LJ∞Xϑ (ϕk,l,∞) ,(6.12)

where we have used that

LJ∞Xϑ (ωk,1,∞) = 2i∂J∞∂J∞Φh(⊕jϑjIdQi).

Therefore the HXϑ(ωk,l,∞) are Hamiltonians for Xϑ with respect to the metric ωk,l,∞, and so

kerD∗(ωk,l(J∞,h))D(ωk,l(J∞,h))|C∞(X,R) = {HXϑ(ωk,l,∞) ∈ (iR)m} ⊕ R ' Rm+1,

where the additional factor of R comes from the addition of a constant. More precisely, for any
φ∞ ∈ L2

4(p+1)(gk,1,∞), if we write projkerD∗(ωk,l(J∞,h))D(ωk,l(J∞,h)) for the L2-orthogonal projection
onto kerD∗(ωk,1(J∞,h))D(ωk,1(J∞,h))|C∞(X,R), we may find a pair (ϑ,R) ∈ Rm × R such that

projkerD∗(ωk,l(J∞,h))D(ωk,l(J∞,h))(φ∞) = 2rk−1HXϑ(ωk,l,∞) +R.

For any φ∞ with
LXϑ (φ∞) = 0,

we may define
HXϑ(ωk,l,∞ + i∂J∞∂J∞ (φ))

in the same way. Note that the map

(φ∞, ϑ) 7→ HXϑ(ωk,l,∞ + i∂J∞∂J∞ (φ))

is linear in both φ∞ and ϑ, and so the linearisation of this map is given by
d

dw
HXwϑ(ωk,l,∞ + i∂J∞∂J∞ (wφ))|w=0(6.13)

= d

dw
wΦh(⊕jϑjIdQi)− w

1
2gk,1,∞

(
∇gk,1,∞Φh(⊕jϑjIdQi),∇gk,1,∞ (ϕk,l,∞ − ϕk,1,∞)

)
|w=0

− d

dw
w2 1

2gk,1,∞
(
∇gk,1,∞Φh(⊕jϑjIdQi),∇gk,1,∞(φ)

)
|w=0

= HXϑ(ωk,l,∞) = LJ∞Xϑ(s) (ϕk,l,∞) .
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Now let fS(s) be a cut-off function which is 0 on the interval [0, S] and 1 on the interval [2S,∞).
We will also consider the path of vector fields

XS
ϑ (s) = fS(s) · J∞Xϑ = fS(s)XiΛωΣF

◦
A∞ ·Fθ

,

where
Fθ = ⊕jθjIdQj .

Note that for t ≤ S we have XS
ϑ (s) = 0, and for t ≥ 2S, XS

ϑ (s) = J∞Xϑ.
In the same way, we will define

V S
s := Vs(1− fS) + fs∇gωk,l(s(t))H (ωk,l(s(t))) ,

so that V S
s = Vs for s ∈ [0, S] and V S

s = ∇gωk,l(s(t))H (ωk,l(s(t))) for [2S,∞).
Note that we may write

ωk,l,∞ + i∂J∞∂J∞φ∞ = ωk,1,∞ + i∂J∞∂J∞(ϕk,l,∞ − ϕk,1,∞ + φ∞),

and so by Lemma 2.4 we have that

HJ∞V∞

(
ωk,l,∞ + i∂J∞∂J∞φ∞

)
= HJ∞V∞ (ωk,l,∞)− 1

2gωk,l,∞
(
∇gωk,l,∞HJ∞V∞ (ωk,l,∞) ,∇gωk,l,∞ (φ∞)

)
= HJ∞V∞

(
ωk,1,∞ + i∂J∞∂J∞(ϕk,l,∞ − ϕk,1,∞ + φ∞)

)
= HJ∞V∞ (ωk,1,∞)− 1

2gωk,1(s(t))
(
∇gωk,1,∞HJ∞V∞ (ωk,1,∞) ,∇gωk,1,∞ (ϕk,l,∞ − ϕk,1,∞ + φ∞)

)
= HJ∞V∞ (ωk,1,∞)− 1

2gωk,1(s(t))
(
∇gωk,1,∞HJ∞V∞ (ωk,1,∞) ,∇gωk,1,∞ (ϕk,l,∞ − ϕk,1,∞)

)
−1

2gωk,1(s(t))
(
HJ∞V∞ (ωk,1,∞) ,∇gωk,l(s(t)) (φ∞)

)
= HJ∞V∞ (ωk,l,∞)− 1

2gωk,1(s(t))
(
∇gωk,1,∞HJ∞V∞ (ωk,1,∞) ,∇gωk,1,∞ (φ∞)

)
so comparing the second and final lines above we obtain

L∇gωk,l,∞HJ∞V∞(ωk,l,∞) (φ∞)

= 1
2gωk,l(s(t))

(
∇gωk,l,∞HJ∞V∞ (ωk,l,∞) ,∇gωk,l(s(t)) (φ∞)

)
= 1

2gωk,1(s(t))
(
∇gωk,1,∞HJ∞V∞ (ωk,1,∞) ,∇gωk,1,∞ (φ∞)

)
= LV∞ (φ∞) .

In particular, LV Ss (φ(s(t) + φ∞) converges smoothly to LV∞ (φ∞).
Now we may define a one parameter family of parametrised Calabi operators

(6.14) CSk,l : W 0
4,p+1,q,wε(s)(gk,1,∞)× L2

4(p+1)(gk,1,∞)× Rm × R→W4,p,q,wε(s)(gk,1,∞)× L2
4p(gk,1,∞)

given by
(φ(s(t)), φ∞, ϑ,R) 7→ (τϑk,l (φ(s(t), φ∞) , κϑk,l(φ∞, R))

where

τϑk,l (φ(s(t)), φ∞)(6.15)

= Scal
(
ωk,l(s(t)) + i∂Js∂Js (φ(s(t)) + φ∞)

)
+H (ωk,l(s(t))) + rk−1LXS

ϑ
(s) (ϕk,l,∞)
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+rk−1
(
∂

∂s
φ(s(t)) + LV Ss +XS

ϑ
(s) (φ(s(t)) + φ∞)

)
−
(
Scal

(
ωk,l,∞ + i∂J∞∂J∞φ∞

)
− 2rk−1HJ∞V∞+Xϑ

(
ωk,l,∞ + i∂J∞∂J∞φ∞

))
,

= Scal
(
ωk,l(s(t)) + i∂Js∂Js (φ(s(t)) + φ∞)

)
+H (ωk,l(s(t))) + rk−1LXS

ϑ
(s) (ϕk,l,∞)

+rk−1
(
∂

∂s
φ(s(t)) + LV Ss +XS

ϑ
(s) (φ(s(t)) + φ∞)

)
−
(
Scal

(
ωk,l,∞ + i∂J∞∂J∞φ∞

)
+H (ωk,l,∞) + rk−1LJ∞Xϑ(s) (ϕk,l,∞) + rk−1 (LV∞+J∞Xϑ (φ∞))

)
,

and where

κϑk,l(φ∞, R)) = κk,l(φ∞)− 2rk−1HXϑ(ωk,l,∞ + i∂J∞∂J∞ (φ∞))−R

= Scal
(
ωk,l,∞ + i∂J∞∂J∞φ∞

)
− 2rk−1

(
HJ∞V∞+Xϑ(ωk,l,∞ + i∂J∞∂J∞ (φ∞))

)
−R

= Scal
(
ωk,l,∞ + i∂J∞∂J∞φ∞

)
+H (ωk,l,∞)(6.16)

+rk−1LJ∞Xϑ(s) (ϕk,l,∞) + rk−1 (LV∞+J∞Xϑ (φ∞))−R

Clearly for every S ≥ 0
CSk,l(0) = Ck,l(0),

so

(6.17)
∥∥∥CSk,l(0)

∥∥∥
W4,p,q,wε(s)(gk,1,∞)×L2

4p(gk,1,∞)
≤ Ck−(l+1/2).

In order to obtain an exact solution to the equation

(6.18) CSk,l ((φ(s(t)), φ∞, ϑ,R)) = 0,

and therefore to equation 6.3 up to time S, we wish to apply the following theorem to the maps
CSk,l.

Theorem 6.1. Let V andW be banch spaces, and C : U →W a differentiable map whose derivative
at 0 is an epimorphism, having right inverse P: Then there is a neighbourhood Bδ′ (0) ⊂ V on which
the map C − dC is Lipschitz with constant 2

‖P‖ . Then if we set δ = δ
′
(

2
‖P‖

)
, for any y ∈ Bδ (C(0)) ,

there exists a unique x ∈ Bδ′ (0) such that C(x) = y.

In the rest of this section, we complete the proof of Theorem 1.3 by establishing that the con-
ditions of hold for the operators CSk,l. In particular, we will need to establish control on both the
linearisation, and the non-linear parts of these maps.

6.2. A bounded inverse for the linearisation. In this subsection we will prove the following
proposition.

Proposition 6.2. For k >> 0 and l ≥ 3, the operator

(6.19) (dCSk,l)0 : W 0
4,p+1,q,wε(s)(gk,l,∞)× L2

4(p+1)(gk,l,∞)× Rm+1 →W4,p,q,wε(s)(gk,l,∞)× L2
4p(gk,l,∞)

is a Banach space epimorphism with right inverse Pk,l. There exists a constant C, such that for all
k >> 0, and all (ψt, ψ∞) ∈W4,p,q,wε(s)(gk,l,∞)× L2

4p(gk,l,∞), the inverse Pk,l satisfies the property

‖Pk,l ((ψt, ψ∞))‖W4,p,q,wε(s)(gk,l,∞)×L2
4p(gk,l,∞)×Rm+1

≤ Ck3 ‖(ψt, ψ∞)‖W4,p,q,wε(s)(gk,l,∞)×L2
4p(gk,l,∞)(6.20)
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= Ck3
(
‖(ψt‖W4,p,q,wε(s)(gk,l,∞) + ||ψ∞||L2

4p(gk,l,∞)

)
.

Note that by Lemmas 2.5 and 2.7, the linearisation of CSk,l at 0 is given by(
dCSk,l

)
0

(φ(s(t)), φ∞, ϑ,R)

=
((
dτϑk,l

)
0

(φ(s(t)), φ∞, θ) ,
(
dκϑk,l

)
0

(φ∞, R)
)
,

where (
dτϑk,l

)
0

(φ(s(t)), φ∞, ϑ)(6.21)

= D∗ωk,l(s(t))Dωk,l(s(t)) (φ(s(t)) + φ∞)− 1
2gωk,l(s(t))

(
∇gωk,l(s(t))Scal (ωk,l(t)) ,∇gωk,l(s(t)) (φ (s (t)) + φ∞)

)
+ ∂

∂s
φ(s(t)) + rk−1LXS

ϑ
(s) (ϕk,l(s)) + rk−1

(
LV Ss (φ(s(t)) + φ∞)

)
−D∗ωk,l,∞Dωk,l,∞ (φ∞) + 1

2gωk,l,∞
(
∇gωk,l,∞Scal (ωk,l,∞) ,∇gωk,l,∞ (φ∞)

)
−1

2gωk,l,∞
(
2rk−1∇gωk,l,∞HJ∞V∞(ωk,l,∞),∇gωk,l,∞ (φ∞)

)
− LJ∞Xϑ (ϕk,l,∞)

= ∂

∂s
φ(s(t)) + D∗ωk,l(s(t))Dωk,l(s(t)) (φ(s(t))) + (D∗ωk,l(s(t))Dωk,l(s(t)) −D∗ωk,l,∞Dωk,l,∞) (φ∞)

+1
2gωk,l,∞

(
∇gωk,l,∞ (Scal (ωk,l,∞) +H (ωk,l,∞)) ,∇gωk,l,∞ (φ∞)

)
+fS(s)1

2gωk,l(s(t))
(
∇gωk,l(s(t)) (Scal (ωk,l(t)) +H (ωk,l(s(t)))) ,∇gωk,l(s(t)) (φ (s (t)) + φ∞)

)
+(1− fS(s))1

2gωk,l(s(t))
(
∇gωk,l(s(t)) (Scal (ωk,l(t))) ,∇gωk,l(s(t)) (φ (s (t)) + φ∞)

)
+ (1− fS(s)) k−1LVs (φ(s(t)) + φ∞) + rk−1

(
LXS

ϑ
(s) (ϕk,l(s))− LJ∞Xϑ (ϕk,l,∞)

)
= ∂

∂s
φ(s(t)) + D∗ωk,l(s(t))Dωk,l(s(t)) (φ(s(t))) + (D∗ωk,l(s(t))Dωk,l(s(t)) −D∗ωk,l,∞Dωk,l,∞) (φ∞)

+ (1− fS(s))Lk−1Vs+∇gωk,l(s(t))(Scal(ωk,l(t)))
(φ(s(t)) + φ∞) + rk−1

(
LXS

ϑ
(s) (ϕk,l(s))− LJ∞Xϑ (ϕk,l,∞)

)
+O(k−(l+1)),

and (
dκϑk,l

)
0

(φ∞, R)(6.22)

= D∗ωk,l,∞Dωk,l,∞ (φ∞)− 1
2gωk,l,∞

(
∇gωk,l,∞Scal (ωk,l,∞) ,∇gωk,l,∞ (φ∞)

)
+1

2gωk,l,∞
(
2rk−1∇gωk,l,∞HJ∞V∞(ωk,l,∞),∇gωk,l,∞ (φ∞)

)
− 2rk−1HXϑ(ωk,l,∞)−R

= D∗ωk,l,∞Dωk,l,∞ (φ∞)−HXϑ(ωk,l,∞)−R+O(k−(l+1)).

This implies that if we define the difference operator

Dk,l : W 0
4,p+1,q,wε(s)(gk,1,∞)× L2

4(p+1)(gk,1,∞)× Rm+1 →W4,p,q,wε(s)(gk,1,∞)× L2
4p(gk,1,∞)

by

(6.23) Dk,l (φ(s(t)), φ∞, ϑ,R) =
(
D(1)
k,l (φ(s(t)), φ∞, ϑ) ,D(2)

k,l (φ∞, ϑ,R)
)
,
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where

D(1)
k,l (φ(s(t)), φ∞, ϑ) = ∂

∂s
φ(s(t)) + D∗ωk,l(s(t))Dωk,l(s(t)) (φ(s(t)))

+(D∗ωk,l(s(t))Dωk,l(s(t)) −D∗ωk,l,∞Dωk,l,∞) (φ∞)

+rk−1
(
LXS

ϑ
(s) (ϕk,l(s))− LJ∞Xϑ (ϕk,l,∞)

)
+ (1− fS(s))Lk−1Vs−∇gωk,l(s(t))(Scal(ωk,l(t)))

(φ(s(t)) + φ∞)

D(2)
k,l (φ∞, ϑ,R) = D∗ωk,l,∞Dωk,l,∞ (φ∞)− 2rk−1HXϑ(ωk,l,∞)−R,

then by 6.21 and 6.22, with respect to the operator norm ||−|| induced by the norm onW4,p+1,q,wε(s)(gk,l,∞)×
L2

4(p+1)(gk,l,∞) we have

(6.24)
∥∥∥(dCSk,l)0

−Dk,l
∥∥∥ ≤ Ck−(l+1).

To prove Proposition 6.2 we wish to apply the following basic functional analysis lemma to(
dCSk,l

)
0
and Dk,l.

Lemma 6.3. Let D : V →W be a bounded epimorphism with bounded right inverse Q. If L:V →W

is another linear map with
‖L − D‖ ≤ (2 ‖Q‖)−1 ,

then L is also an epimorphism with bounded right inverse P satisfying

‖P‖ ≤ 2 ‖Q‖ .

To use this lemma, we need to know that the hypotheses apply toDk,l and
∥∥∥(dCSk,l)0

−Dk,l
∥∥∥. This,

as well as the fact that the conclusion of this lemma suffices to give the conclusion of Proposition6.2
is a result of the following lemma combined with equation6.24.

Lemma 6.4. The operator

Dk,l : W 0
4,p+1,q,wε(s)(gk,l,∞)× L2

4(p+1)(gk,l,∞)× Rm × R→W4,p,q,wε(s)(gk,l,∞)× L2
4p(gk,l,∞)

is well defined, and an epimorphism of Banach spaces. There is a constant C such that for all
sufficiently large k, the right inverse Qk,l satisfies

‖Qk,l ((ψ(s(t)), ψ∞))‖W4,p+1,q,wε(s)(gk,l,∞)×L2
4(p+1)(gk,l,∞)(6.25)

≤ Ck3 ‖(ψ(s(t)), ψ∞)‖W4,p,q,wε(s)(gk,1,∞)×L2
4p(gk,l,∞) .

Proof of Lemma6.4. We may solve the two equations

D(1)
k,l (φ(s(t)), φ∞, ϑ) = ψ(t)

D(2)
k,l (φ∞, ϑ,C) = ψ∞,

for any (ψ(t), ψ∞) ∈W4,p,q,wε(s)(gk,l,∞)× L2
4p(gk,1,∞), since we may write these equations as

∂

∂s
φ(s(t)) + D∗ωk,l(s(t))Dωk,l(s(t)) (φ(s(t)))

+ (1− fS(s))Lk−1Vs+∇gωk,l(s(t))(Scal(ωk,l(t)))
(φ(s(t)) + φ∞)

= −(D∗ωk,l(s(t))Dωk,l(s(t)) −D∗ωk,l,∞Dωk,l,∞) (φ∞)(6.26)

−rk−1
(
LXS

ϑ
(s) (ϕk,l(s))− LJ∞Xϑ (ϕk,l,∞)

)
+ ψ(s(t))
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φ(0) = φ0

and

D∗ωk,l,∞Dωk,l,∞ (φ∞)

= 2rk−1HXϑ(ωk,l,∞) +R+ ψ∞.(6.27)

To solve the second equation we may choose (ϑ,R) so that

projkerD∗(ωk,l(J∞,h))D(ωk,l(J∞,h))(ψ∞) = −HXϑ(ωk,l,∞)−R,

and so for this choice, the right hand side of the second equation above is orthogonal to

kerD∗(ωk,l(J∞,h))D(ωk,l(J∞,h)).

We write ζs for the flow of the vector field

(1− fS(s))
(
k−1Vs +∇gωk,l(s(t)) (Scal (ωk,l(t)))

)
.

Since this vector field is 0 for s ∈ [2S,∞), ζs is constant in s on this interval, and therefore we
may write the pullback of this equation by ζs:

∂

∂s
ζ∗s (φ(s(t))) + D∗ζ∗sωk,l(s(t))Dζ∗sωk,l(s(t)) (ζ∗s (φ(s(t))))

= −ζ∗s
((

(D∗ωk,l(s(t))Dωk,l(s(t)) −D∗ωk,l,∞Dωk,l,∞) (φ∞)
)⊥

+ rk−1
(
LXS

ϑ
(s) (ϕk,l(s))− LJ∞Xϑ (ϕk,l,∞)

)⊥)
ζ∗s

(
−
(

(1− fS(s))Lk−1Vs−∇gωk,l(s(t))(Scal(ωk,l(t)))
(φ∞)

)⊥
+ ψ(t)

)
,

so writing φ̃(s(t)) = φ ◦ ζs, and since ζs is constant for s ∈ [2S,∞), and in particular bounded, we
obtain an equation of the form

∂

∂s
φ̃(s(t)) + D∗ζ∗sωk,l(s(t))Dζ∗sωk,l(s(t))

(
φ̃(s(t))

)
= ψ̃(t)

where ψ̃(t) ∈W4,p,q−1,wε(s)(gk,l,∞) and where ψ̃(t) is L2 orthogonal to the kernel ofD∗ζ∗∞ωk,l,∞Dζ∗∞ωk,l,∞ ,
and therefore this equation has a solution by Theorem 7.10. and therefore, Equation 6.26 has a
solution φ(s) in the space W4,p+1,q,wε(s)(gk,l,∞).

This shows that Dk,l is surjective. We therefore obtain a right inverse to Qk,l to Dk,l defined by

Qk,l (ψ(t), ψ∞) = (φ(t), φ∞, ϑ,R),

where
−2rk−1HXϑ(ωk,l,∞)−R = ψ⊥∞

and where the pair (φ(t), φ∞) solves equations 6.26 and 6.27 respectively. It remains to prove the
estimate 6.25. Note that by Lemma 41 of [B], there is a constant C, such that for our choice of
(ϑ,R),

‖φ∞‖L2
4(p+1)(gk,l,∞) ≤ C

(
‖φ∞‖L2(gk,l,∞) +

∥∥∥D(2)
k,l (φ∞, ϑ,R)

∥∥∥
L2

4p(gk,l,∞)

)

= C

(
‖φ∞‖L2(gk,l,∞) +

∥∥∥D∗ωk,l,∞Dωk,l,∞ (φ∞)− 2rk−1HXϑ(ωk,l,∞)−R
∥∥∥
L2

4p(gk,l,∞)

)
,

and by Lemma 39 of [B], there is also an estimate

(6.28) ‖φ∞‖L2(gk,l,∞) ≤ Ck
3
∥∥∥D∗ωk,l,∞Dωk,l,∞ (φ∞)− 2rk−1HXϑ(ωk,l,∞)−R

∥∥∥
L2

4p(gk,l,∞)
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and therefore obtain an estimate

‖φ∞‖L2
4(p+1)(gk,l,∞) ≤ Ck3

∥∥∥D∗ωk,l,∞Dωk,l,∞ (φ∞)− 2rk−1HXϑ(ωk,l,∞)−R
∥∥∥
L2(gk,l,∞)

+C
∥∥∥D∗ωk,l,∞Dωk,l,∞ (φ∞)− 2rk−1HXϑ(ωk,l,∞)−R

∥∥∥
L2

4p(gk,l,∞)

≤ Ck3
∥∥∥D∗ωk,l,∞Dωk,l,∞ (φ∞)− 2rk−1HXϑ(ωk,l,∞)−R

∥∥∥
L2

4p(gk,l,∞)

= Ck3 ‖ψ∞‖L2
4p(gk,l,∞)

By Lemma 4.20 above, for the choice of solution to the initial value problem 6.26 where the initial
condition is set to φ0 = 0, we also have an estimate∥∥∥(φ̃(s(t))

∥∥∥
W4(p+1),q,wε(s)(gk,l,∞)

≤ C
(∥∥∥ψ̃(s(t))

∥∥∥
W4,p,q−1,wε(s)(gk,l,∞))

)
,

and since the ζs is bounded, we obtain an estimate:

‖(φ(s(t))‖W4(p+1),q,wε(s)(gk,l,∞)

≤ C

(∥∥∥∥((D∗ωk,l(s(t))Dωk,l(s(t)) −D∗ωk,l,∞Dωk,l,∞) (φ∞)
)⊥∥∥∥∥

W4,p,q−1,wε(s)(gk,l,∞)
+ ‖ψ(s(t))‖W4,p,q,wε(s)(gk,l,∞))

)

+C
∥∥∥∥rk−1

(
LXS

ϑ
(s) (ϕk,l,∞)− LJ∞Xϑ (ϕk,l,∞)

)⊥∥∥∥∥
W4,p,q−1,wε(s)(gk,l,∞))

+C
∥∥∥∥∥
(

(1− fS(s))Lk−1Vs−∇gωk,l(s(t))(Scal(ωk,l(t)))
(φ∞)

)⊥∥∥∥∥∥
W4,p,q−1,wε(s)(gk,l,∞))

.

Clearly we have estimates∥∥∥∥∥
(

(1− fS(s))Lk−1Vs−∇gωk,l(s(t))(Scal(ωk,l(t)))
(φ∞)

)⊥∥∥∥∥∥
W4,p,q−1,wε(s)(gk,l,∞))

≤ C ‖φ∞‖L2
4(p+1)(gk,l,∞) ≤ Ck

3 ‖ψ∞‖L2
4p(gk,l,∞) ,∥∥∥∥((D∗ωk,l(s(t))Dωk,l(s(t)) −D∗ωk,l,∞Dωk,l,∞) (φ∞)

)⊥∥∥∥∥
W4,p,q−1,wε(s)(gk,l,∞)

≤ C ‖φ∞‖L2
4(p+1)(gk,l,∞) ≤ Ck

3 ‖ψ∞‖L2
4p(gk,l,∞) ,

since (1− fS(s)) is supported on a finite interval, and the operator norm∥∥∥D∗ωk,l(s(t))Dωk,l(s(t)) −D∗ωk,l,∞Dωk,l,∞

∥∥∥
has finite integral when multiplied by the weight function, and where we have also used estimate
6.28. We may write

rk−1
(
LXS

ϑ
(s) (ϕk,l,∞)− LJ∞Xϑ (ϕk,l,∞)

)
= rk−1 (fS(s)− 1)LXS

ϑ
(s) (ϕk,l,∞)

= (fS(s)− 1) 2rk−1HXϑ(ωk,l,∞)

= (1− fS(s))
(
ψ⊥∞ +R

)
,

so that ∥∥∥∥rk−1
(
LXS

ϑ
(s) (ϕk,l,∞)− LJ∞Xϑ (ϕk,l,∞)

)⊥∥∥∥∥
W4,p,q−1,wε(s)(gk,l,∞))
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=
∥∥∥(1− fS(s))ψ⊥∞

∥∥∥
W4,p,q−1,wε(s)(gk,l,∞))

≤ C ‖ψ∞‖L2
4p(gk,l,∞) ,

since again (1− fS(s)) is supported on a finite interval. These estimates then combine to give:

‖(φ(s(t))‖W4(p+1),q,wε(s)(gk,l,∞) ≤ C
(
‖ψ(s(t))‖W4,p,q,wε(s)(gk,l,∞)) + k3 ‖ψ∞‖L2

4p(gk,l,∞)

)
Note also that we have by construction (since HXϑ(ωk,l,∞) is L2 orthogonal to the constants)

that ∥∥∥ψ⊥∞∥∥∥
L2

4p(gk,l,∞)
≥ C

(
‖HXϑ(ωk,l,∞)‖L2

4p(gk,l,∞) + |R|
)

≥ C
(
‖ϑ‖L2

4p(gk,l,∞) + |R|
)

≥ C (‖ϑ‖+ |R|) ,

by formula 6.13 and the argument of Lemma 4.15.
Then finally we obtain the estimate

‖Qk,l (ψ(t), ψ∞)‖W4(p+1),q,wε(s)(gk,l,∞)×L2
4(p+1)(gk,l,∞)×Rm×R

= ‖(φ(t), φ∞, ϑ,R)‖W4(p+1),q,wε(s)(gk,l,∞)×L2
4(p+1)(gk,l,∞)×Rm×R

= ‖φ(t)‖W4(p+1),q,wε(s)(gk,l,∞) + ‖φ∞‖L2
4(p+1)(gk,l,∞) + ||ϑ||+ |R|

≤ C
(
‖ψ(s(t))‖W4,p,q,wε(s)(gk,l,∞)) + k3 ‖ψ∞‖L2

4p(gk,l,∞)

)
≤ Ck3

(
‖(ψ(s(t), ψ∞)‖W4,p,q,wε(s)(gk,l,∞))×L2

4p(gk,l,∞)

)
,

as stated. �

Finally we have the

Proof of Proposition 6.2. By Lemma 6.4 we have an estimate on the operator norm

‖Qk,l‖ ≤ Ck3,

so in order to apply Lemma6.3 to (dCSk,l)0 −Dk,l, we need that∥∥∥(dCSk,l)0 −Dk,l
∥∥∥ ≤ Ck−3.

By estimate 6.24, this will be acheived whenever l ≥ 3. The result follows immediately. �

6.3. An estimate on the non-linear term. As in the sketch in Section 6.1 we define N S
k,l :=

CSk,l − dCSk,l. This is the analogue of Lemma 7.1 in [F] Lemma 44 in [B].

Proposition 6.5. Let k ≥ 3. There are positive constants c and K, such that for all

(φ(s), φ∞, ϑ1, R1) , (ψ(s), ψ∞, ϑ2, R2) ∈W 0
4,p+1,q,wε(s)(gk,l,∞)× L2

4(p+1)(gk,l,∞)× Rm × R

with

‖(%(s), %∞, ϑ1, R1)‖W4,p+1,q,wε(s)(gk,l,∞)×L2
4(p+1)(gk,l,∞)×Rm×R ≤ c,

‖(ψ(s), ψ∞, ϑ2, R2)‖W4,p+1,q,wε(s)(gk,l,∞)×L2
4(p+1)(gk,l,∞)×Rm×R ≤ c,

and for k sufficiently large,∥∥∥N S
k,l (%(s), %∞, ϑ1, R1)−N S

k,l (ψ(s), ψ∞, ϑ2, R2)
∥∥∥

≤ K max {‖(%(s), %∞, ϑ1, R1)‖ , ‖ψ(s), ψ∞, ϑ2, R2‖} ‖(%(s)− ψ(s), %∞ − ψ∞, ϑ1 − ϑ2, R1 −R2)‖
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where on the left hand side the norm is the norm onW4,p,q−1,wε(s)(gk,l,∞)×L2
4p(gk,l,∞)×Rm×R, and

on the right hand side, the norms are the norm on W4,p+1,q,wε(s)(gk,l,∞)×L2
4(p+1)(gk,l,∞)×Rm×R.

Proof. If we write

[(φ(s), φ∞, ϑ1, R1) , (ψ(s), ψ∞, ϑ2, R2)]
= {w (φ(s), φ∞, ϑ1, R1) + (1− w)(ψ(s), ψ∞, ϑ2, R2)| w ∈ [0, 1]} ,

then by the mean value theorem,we have∥∥∥N S
k,l (φ(s), φ∞, ϑ1, R1)−N S

k,l (ψ(s), ψ∞, ϑ2, R2)
∥∥∥

≤ sup
(χ(s),χ∞,ϑ,R)

∥∥∥∥(dN S
k,l

)
(χ(s),χ∞,ϑ,R)

∥∥∥∥ ‖(φ(s)− ψ(s), φ∞ − ψ∞, ϑ1 − ϑ2, R1 −R2)‖

where the sup is over all (χ(s), χ∞, ϑ,R) ∈ [(%(s), %∞, ϑ1, R1) , (ψ(s), ψ∞, ϑ2, R2)].
By construction, we have(

dN S
k,l

)
(χ(s),χ∞,ϑ,R)

= d
(
CSk,l

)
(χ(s),χ∞,ϑ,R)

−
(
dCSk,l

)
0

= (d (τk,l)(χ(s),χ∞,ϑ) − d(τk,l)0, d(κk,l)(χ∞,ϑ,R) − d(κk,l)(χ∞,ϑ,R)).

Using formulas 6.15 and 6.16 we may calculate the directional derivatives of τk,l and κk,l at
(χ(s), χ∞, ϑ,R) and 0 respectively, in the direction of

(
φ(s), φ∞, ϑ

′
, R
′
)
to obtain(

d (τk,l)(χ(s),χ∞,ϑ) − d(τk,l)0
) (
φ(s), φ∞, ϑ

′)
=

(
d(χ(t),χ∞) − d0

) (
Scalωk,l(t) − Scalωk,l,,∞

)
(φ(s), φ∞)

+LXS
ϑ

(s) (φ(s) + φ∞)− LJ∞Xϑ (φ∞) + LXS

ϑ
′ (s) (χ(s) + χ∞)− LJ∞X

ϑ
′ (χ∞)

=
(
d(χ(t),χ∞) − d0

) (
Scalωk,l(t) − Scalωk,l,,∞

)
(φ(s), φ∞)

+LXS
ϑ

(s) (φ(s)) +
(
LXS

ϑ
(s) − LJ∞Xϑ

)
(φ∞) + LXS

ϑ
′ (s) (χ(s) + χ∞)− LJ∞X

ϑ
′ (χ∞) ,

(
d(κk,l)(χ∞,ϑ,R) − d(κk,l)0

) (
φ∞, ϑ

′
, R
′)

=
(
d(χ∞,ϑ,R) − d0

)
Scalωk,l,,∞ (φ∞)

+LJ∞Xϑ (φ∞) + LJ∞X
ϑ
′ (χ∞) ,

so that we obtain∥∥∥∥(dN S
k,l

)
(χ(s),χ∞,ϑ,R)

(
φ(s), φ∞, ϑ

′
, R
′)∥∥∥∥

W4,p,q−1,wε(s)(gk,l,∞)×L2
4p(gk,l,∞)×Rm×R

≤
∥∥∥(d(χ(t),χ∞) − d0

) (
Scalωk,l(t) − Scalωk,l,∞

)
(φ(s), φ∞)

∥∥∥
W4,p,q−1,wε(s)(gk,l,∞)

+
∥∥∥LXS

ϑ
(s) (φ(s))

∥∥∥
W4,p,q−1,wε(s)(gk,l,∞)

+
∥∥∥(LXS

ϑ
(s) − LJ∞Xϑ

)
(φ∞)

∥∥∥
W4,p,q−1,wε(s)(gk,l,∞)

+
∥∥∥∥LXS

ϑ
′ (s) (χ(s) + χ∞)

∥∥∥∥
W4,p,q−1,wε(s)(gk,l,∞)

+
∥∥∥LJ∞X

ϑ
′ (χ∞)

∥∥∥
W4,p,q−1,wε(s)(gk,l,∞)

+
∥∥∥(dχ∞ − d0)Scalωk,l,,∞ (φ∞)

∥∥∥
L2

4p(gk,l,∞)
+ ‖LJ∞Xϑ (φ∞)‖L2

4p(gk,l,∞) +
∥∥∥LJ∞X

ϑ
′ (χ∞)

∥∥∥
L2

4p(gk,l,∞)

≤ K

(
‖(χ(t), χ∞)‖W4,p+1,q,wε(s)(gk,l,∞)×L2

4(p+1)(gk,l,∞) · ‖(φ(s), φ∞)‖W4,p+1,q,wε(s)(gk,l,∞)×L2
4(p+1)(gk,l,∞)

)
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+K
(
‖ϑ‖ · ‖φ∞‖L2

4p(gk,l,∞) +
∥∥∥ϑ′∥∥∥ · (‖χ(s)‖W4,p+1,q,wε(s)(gk,l,∞) + ‖χ∞‖L2

4p(gk,l,∞)

))
+K

(∥∥∥ϑ′∥∥∥ · ‖χ(s)‖W4,p+1,q,wε(s)(gk,l,∞) + ‖χ∞‖ · ‖φ∞‖L2
4(p+1)(gk,l,∞)

)
+K

(
‖ϑ‖ · ‖φ∞‖L2

4p(gk,l,∞) +
∥∥∥ϑ′∥∥∥ · ‖χ∞‖L2

4p(gk,l,∞)

)
≤ K

(
‖(χ(s))‖W4,p+1,q,wε(s)(gk,l,∞) + ‖χ∞‖L2

4p(gk,l,∞) + ‖ϑ‖
)

×
(
‖(φ(s))‖W4,p+1,q,wε(s)(gk,l,∞) + ‖φ∞‖L2

4p(gk,l,∞) +
∥∥∥ϑ′∥∥∥)

≤ K
(
‖(χ(s), χ∞, ϑ,R)‖ ·

∥∥∥(φ(s), φ∞, ϑ
′
, R
′)∥∥∥)

≤ max{‖(%(s), %∞, ϑ1, R1)‖ , ‖(ψ(s), ψ∞, ϑ2, R2)‖} ·
∥∥∥(φ(s), φ∞, ϑ

′
, R
′)∥∥∥ ,

where we have used the bound

‖(χ(s), χ∞, ϑ,R)‖W4,p+1,q,wε(s)(gk,l,∞)×L2
4p(gk,l,∞)×Rm×R

≤ max{‖(%(s), %∞, ϑ1, R1)‖ , ‖(ψ(s), ψ∞, ϑ2, R2)‖} ≤ c,

and also Lemma 4.19, where we note that the proof of the latter works just as well for the metrics
gk,l,∞ as for gk,1,∞. We therefore obtain a uniform bound bound on the operator norm∥∥∥∥(dN S

k,l

)
(χ(s),χ∞,ϑ,R)

∥∥∥∥ ≤ max{‖(%(s), %∞, ϑ1, R1)‖ , ‖(ψ(s), ψ∞, ϑ2, R2)‖},

and the result follows. �

6.4. Proof of Theorem 1.3. Clearly, Propositions 6.2 and 6.5 establish the following two prop-
erties.

(i) The derivative of the map CSk,l at 0 is an epimorphism, whose right inverse Pk,l which enjoys
a uniform estimate

‖Pk,l ((ψt, ψ∞))‖W4,p,q,wε(s)(gk,l,∞)×L2
4p(gk,1,∞)×Rm×R ≤ Ck

3 ‖(ψt, ψ∞)‖W4,p,q,wε(s)(gk,l,∞)×L2
4p(gk,l,∞)

(ii) The non-linear part of CSk,l, namely Nk,l := CSk,l − dCSk,l has the property that there exists
a constant C such that for all sufficiently small M , Nk,l is Lipschitz with constant M on
a ball of radius CM.

Given these facts, the existence of a solution to equation 6.18 follows. Namely, points (i) and (ii)
above combine to say that the radius δ′k of the ball B

δ
′
k
(0) on which Nk,l is Lipschitz with constant

2
‖Pk,l‖ , is bounded below by

(6.29) 2C
‖Pk,l‖

≥ Ck−3.

Then defining

(6.30) δk = δ
′
k

(
2

‖Pk,l‖

)
as in Theorem 6.1, we obtain that

(6.31) δk ≥
4C
‖Pk,l‖2

≥ Ck−6,
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and therefore by Theorem 6.1,∥∥∥CSk,l(0)− (ψt, ψ∞)
∥∥∥
W4,p,q,wε(s)(gk,l,∞)×L2

4p(gk,l,∞)
≤ Ck−6

implies that there is a solution (φ(s(t)), φ∞, ϑ,R) to

(6.32) CSk,l(φ(s(t)), φ∞, ϑ,R) = (ψ(s(t)), ψ∞).

In particular, by the Sobolev bound 6.17, for l ≥ 6, Equation 6.18, has a solution for every S, and
therefore since up to time S a solution to this equation is equivalent a solution to 6.3, the latter
will have a solution for all time.

7. Appendix

7.1. Linear parabolic equations on compact Riemannian manifolds. In this appendix we
will state and sketch the proofs of the existence, uniqueness and regularity theorems, for linear
parabolic PDEs on compact Riemannian manifolds. These theorems are probably more or less
standard, but it seems difficult to find precise statements and proofs of them in the literature. One
source is Huisken and Polden, and we will follow their basic approach here, but our treatment will
be slightly more streamlined, and we will also modify the norms that are involved to accomodate
our particular problem.

7.1.1. Notation and basic definitions. Throughout this appendix we will let

(E, 〈−,−〉)→ (M, g)

be a smooth complex vector bundle over a Riemannian manifold with an Hermitian metric 〈−,−〉
on E. In practice, E will be either the endomorphism bundle of another vector bundle, or the trivial
line bundle. We will consider the theory of equations of the form

∂u(t)
∂t

+ Ltu(t) = f(t),

where L(t) : Γ(E) → Γ(E) is a 1-parameter family of differential operators of order 2d. We will
assume that that Lt is self-adjoint and strongly elliptic for each t. Recall that self-adjoint means
that 〈Ltu, v〉 = 〈u, Ltv〉 for all u, v ∈ Ex, and all x ∈ M . To define strongly elliptic, we recall the
definition of the symbol of a differential operator. If L : C∞(E)→ C∞(E) is a differential operator,
then for each u ∈ Γ(E) in local coordinates we have

Lu =
∑
|α|≤2d

Lα
∂αu

∂xα

where Lα : E → E is a bundle endomorphism and α = (α1, · · · , αm) is a multi-index. The principal
symbol is given by σ(L) : E ⊗ T ∗M → E is defined by

σ(L, x)(ξ)(v) =
∑
|α|=2d

ξα1
i1
· · · ξα2d

i2d
Lα(v)

where x ∈ M is any point and 0 6= ξ ∈ Γ(T ∗xM), written locally as ξ = ξidx
i. Then L is called

strongly elliptic (or sometimes uniformly strongly elliptic) if there is a constant c such that for
all x ∈M and all 0 6= ξ ∈ Γ(T ∗xM)

Re (〈σ(L, x)(ξ)(v), v〉) ≥ c |ξ|2d

for all 0 6= v ∈ Ex. Note that this implies in particular that for each x ∈ M and 0 6= ξ ∈ Γ(T ∗xM),
σ(L, x)(ξ) : Ex → Ex is an isomorphism, which is usually taken as the definition of an elliptic
operator.
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Remark 7.1. From here on out, we will also assume that the set ker(Lt)= K ⊂ C∞(E) is inde-
pendent of t. This is of course trivially satisfied when Lt = L is just a constant path of operators.

7.1.2. Some results from functional analysis. We will also have need of Gårding’s Inequality,
which states that for a a strongly elliptic operator L of order 2d there exist constants C1 > 0 and
C2 ≥ 0 such that for every u ∈ L2

d(E),

Re 〈Lu, u〉L2 ≥ C1 ‖u‖2L2
d
− C2 ‖u‖2L2 .

If there furthermore exists an M > 0 such that

Re 〈Lu, u〉 ≥M ‖u‖2L2 ,

for all u ∈ L2
d(E) then by Gårding’s inequality

Re 〈Lu, u〉L2 ≥ C ‖u‖2L2
d
,

where C = C1(
1+C2

M

) . In this case we say that L is positive definite. Note that if L is positive

definite, then so is L∗L, and therefore

‖Lu‖2L2 ≥ C ‖u‖2L2
2d
.

In particular, if L is positive definite, the kerL = 0. If L is also self-adjoint then cokerL = kerL∗ =
kerL = 0, so L is invertible. We will call L positive semi-definite if Re〈Lu, u〉L2 ≥ 0. If L is
positive semi-definite, then clearly L+ Id is positive definite.

For a complex Hilbert space H with norm ‖·‖H , and H
′ ⊂ H a linear sub-space with norm ‖·‖H′ ,

such that the inclusion H ′ ↪→ H is continuous. The key result we will need to prove the parabolic
existence, uniqueness, and regularity theorems is the following result of Lax-Lions-Milgram.

Theorem 7.2. (Lax-Lions-Milgram) Let B : H×H ′ → C be a sesquilinear form with the following
properties

1. Continuity. For all fixed φ ∈ H ′, the map given by v 7→ B(v, φ) is a continuous linear map
H → C.

2. Coercivity. There is a constant λ > 0 such that for all φ ∈ H ′ , ReB(φ, φ) ≥ λ ‖φ‖2H .,
Then for any continous linear map F : (H ′ , ‖·‖H′ ) → R, there exists v ∈ H such that for all

φ ∈ H ′, B(v, φ) = F (φ). Furthermore ‖v‖H ≤
c
λ ‖F‖, where ‖F‖ denotes the operator norm.

7.1.3. Parabolic Sobolev norms. Now we will introduce the norms that will be used for parabolic
theory. The primitive form of the norm will be defined as follows. Let wε(t) be a smooth, real-valued,
weight function (to be defined later), and define the parabolic Sobolev norm || − ||V2k,wε(t) of
compactly supported function smooth function f ∈ C∞0 (M × [0,∞)) by

‖f‖2V2k,wε(t)
=

� ∞
0
|wε(t)|2 ‖f‖2L2

2k
dt.

To prove this is a norm, the only (slightly) non-trivial property to check is the triangle inequality.
This follows from the triangle inequality for‖−‖L2

2k
and Hölder’s inequality on [0,∞). Namely:

‖f + g‖2V2k,wε(t)
=

� ∞
0
|wε(t)|2 ‖f + g‖2L2

2k
dt ≤

� ∞
0
|wε(t)|2

(
‖f‖L2

2k
+ ‖g‖L2

2k

)2
dt

=
� ∞

0

(
|wε(t)|2 ‖f‖2L2

2k
+ 2 |wε(t)|2 ‖f‖L2

2k
‖g‖L2

2k
+ |wε(t)|2 ‖g‖2L2

2k

)
dt

≤ ‖f‖2V2k,wε(t)
+ 2 ‖g‖2V2k,wε(t)

‖g‖2V2k,wε(t)
+ ‖g‖2V2k,wε(t)
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= (‖f‖V2k,wε(t)
+ ‖g‖V2k,wε(t)

)2.

Now we fix a subspace K ⊂ E

Definition 7.3. We define the the primitive parabolic Sobolev space with weight wε(t)
relative to K to be the completion V2k,wε(t)(E,K) of the space K⊥ ∩ C∞0 (E,M × [0,∞)) with
respect to this norm, where K⊥ ⊂ L2((E,M × [0,∞)) is the L2 orthogonal complement of K.

To obtain strong solutions of our parobolic equations, we will need to develop a regularity theory
for solutions of parabolic equations, which will require a more sophisticated version of this norm.
Namely, for each triple of non-negative integers d, p, and q with q ≤ p and a smooth function weight
function wε(t) on the interval [0,∞) with wε(0) = 0, we define a family of parabolic Sobolev
norms ‖·‖Wd,p,q,wε(t)

on the space C∞0 (M × [0,∞), p∗M (E)) of compactly supported sections of the
bundle p∗M (E) over M × [0,∞) (where pM : M × [0,∞)→M is the natural projection) by:

‖φ(t)‖2Wd,p,,q,wε(t)(g) =
q∑
j=0

� ∞
0
|wε(t)|2

∥∥∥∥∥∂jφ(t)
∂t

∥∥∥∥∥
2

L2
d(p−j)(g)

dt =
q∑
j=0

∥∥∥∥∥∂jφ(t)
∂t

∥∥∥∥∥
2

Vd(p−j)(g)

For φ(t) ∈ C∞0 (M × [0,∞), p∗M (E)) this is clearly finite and, is a norm since ‖−‖2V2d(p−j)(g) is a
norm and ∂j

∂t is linear. We will furthermore set

‖·‖Wd,p,wε(t)
:= ‖·‖Wd,p,p,wε(t)

.

Let K ⊂ E be a fixed subspace.

Definition 7.4. We define the parabolic Sobolev spaces with weight wε(t) relative to K to
be the completion ofK⊥∩C∞0 (M × [0,∞), p∗M (E)) with respect to these norm, whereK⊥ ⊂ L2(E)
is the L2-orthogonal complement of K. We will denote this space by Wd,p,s,wε(t)(E,K).

Remark 7.5. In practice K ⊂ E will be the kernel of the operator Lt, which we will assume to be
independent of t.

Remark 7.6. In order to make the parabolic theory work in our setting we will define the weight
function to be wε(t) = e−η(t)t−εψ(t), where 0 < ε <∞ is a positive real number and η(t) and ψ(t)
are smooth functions defined below, which in particular will make wε(t) a smooth function with
wε(0) = 1.

For our purposes we will need to impose the further restriction that the Sobolev norms in the
definition of the Wd,p,wε(t) norm vanish at infinity.

Definition 7.7. We define the space W 0
d,p,q,wε(t)(E,K) ↪→Wd,p,q,wε(t)(E,K) to be the subset

W 0
d,p,q,wε(t)(E,K) = {φt ∈Wd,p,q,wε(t)(E,K)| lim

t→∞
||∂jt (φt)||L2

d(p−j)
= 0, for all 0 ≤ j ≤ q}.

Lemma 7.8. For p ≥ 1, the subset W 0
d,p,q,wε(t)(E,K) is a closed subspace of Wd,p,q,wε(t)(E,K), and

therefore a Banach space.

Proof. W 0
d,p,q,wε(t)(E,K) is clearly a subspace, so it remains only to show that it is closed.

First of all, for a path φt ∈ W2,p,wε(t)(E,K). Thinking of ∂jt (φt) as a map ∂jt (φ) : [0,∞) →
L2
d(p−j)(X), since wε(t) is smooth we have that for any finite number S, and each 0 ≤ j < q,

∂jt (φt) ∈ L2
1([0, S], L2

d(p−j)(X)) ↪→ C1([0, S], L2
d(p−j)(X)), by the (Banach space valued) Sobolev
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embedding theorem, and therefore φt has p strong time derivatives. In particular, for each 0 ≤ j ≤ q

||∂jt (φt)||L2
d(p−j)

is continuous as a function on [0,∞).
Now take a sequence φt,i ∈W 0

d,p,qwε(t)(E,K), and suppose φt,i → φt in the norm || − ||Wd,p,q,wε(t)

for some φt ∈Wd,p,q,wε(t)(M,E). Explicitly this means that

lim
j→∞

||φt,i − φt||Wd,p,q,wε(t) =
q∑
j=0

lim
i→∞

� ∞
0
|wε(t)|2

∥∥∥∂jt (φt,i − φt)∥∥∥2

L2
2d(p−j)(g)

= 0.

In other words
|wε(t)|2

∥∥∥∂jt (φt,i − φt)∥∥∥2

L2
2d(p−j)(g)

→ 0

in L1([0,∞)) for each j. Therefore there is a subsequence (which we still denote by φt,i), which
converges pointwise almost everywhere. Since |wε(t)|2 > 0, this means that for almost every t ∈
[0,∞), we have

lim
i→∞

∥∥∥∂jt (φt,i − φt)∥∥∥2

L2
2d(p−j)(g)

= 0

for each j.
Now fix δ > 0. Then there exists an i such that∥∥∥∂jt (φt,i − φt)∥∥∥

L2
2d(p−j)(g)

≤ δ/2.

Since φt,i ∈W 0
d,p,wε(t)(E,K) we may find T >> 0 such that for t > T , we have∥∥∥∂jt (φt,i)∥∥∥

L2
2d(p−j)(g)

≤ δ/2

for each j. Then for almost all t > T we have∥∥∥∂jt (φt)∥∥∥
L2

2d(p−j)(g)
≤
∥∥∥∂jt (φt,i − φt)∥∥∥

L2
2d(p−j)(g)

+
∥∥∥∂jt (φt,i)∥∥∥

L2
2d(p−j)(g)

≤ δ,

for each j. Since
∥∥∥∂jt (φt)∥∥∥

L2
2d(p−j)(g)

is continuous, this must hold for all t > T . Therefore

lim
i→∞

∥∥∥∂jt (φt)∥∥∥
L2

2d(p−j)(g)
= 0

and φt ∈ W 0
d,p,q,wε(t)(M,K), and W 0

d,p,q,wε(t)(M,K) is closed. Since a closed subspace of a Banach
space is a Banach space, this implies that W 0

d,p,q,wε(t)(E,K) is a Banach space. �

7.1.4. Linear equations with a time dependent operator. We will now prove state and prove a low-
regularity version of the existence for solutions of linear parabolic equations whose forcing term lies
in a parabolic Sobolev space.

Theorem 7.9. Let Lt be a self-adjoint, strongly elliptic, semi-definite operator of order 2k for all
t, assume that Lt is a smooth family, and assume that

∥∥∥∂Lt∂t ∥∥∥L2(g)
→ 0 (so that for any δ > 0,

there is a T >> 0, so that ‖∂tLt‖L2(g) < δ for t > T ); and in particular Lt converges to a self-
adjoint, strongly elliptic, semi-definite operator of order 2d, denoted by L∞ = limt→∞ Lt. Then the
exists smooth functions η(t) and ψ(t) on [0,∞), with η(t) ≤ 0 and ψ(t) ≥ 0 (and vanishing in
a neighbourhood of 0, so that in particular wε(t) is smooth) such that given any ε > 0, and any
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g ∈ V0,wε(t)(E),with g(t) ⊥ ker(Lt) for each t, and f0 ∈ L2
k(E), there exists a unique f ∈ V2k,wε(t)(E)

so that ∂tf ∈ V0,a(t)(E)), which solves the initial value problem

∂f(t)
∂t

+ Ltf(t) = g(t),

f(0) = f0.

Furthermore there is a parabolic estimate

‖∂tf‖2V0,wε(t)(g) + ‖f‖2V2k,wε(t)(g)

≤ C
(
‖f0‖L2

k
(g) + ‖g‖V0,wε(t)(g)

)
,

where the constant C depends only on ε,η(t), ψ(t) and Lt.

Proof. We will put ourselves in a position to apply the Lax-Lions-Milgram theorem, which requires
us in particular to produce a subspace H ⊂ Vk,wε(t), a sesquilinear form B : Vk,wε(t) × H → R,
and a bounded linear functional F : H → R. To motivate the definitions, notice that if f ∈
C∞0 (M × [0,∞)) solves the initial value problem

∂tf + Ltf = g

f(0) = f0,

where L(t) is for each t a self-adjoint elliptic operator of order 2k, then integrating by parts and
writing 〈−,−〉 for the L2 inner product we must have� ∞

0
|wε(t)|2 〈g, Lφ〉 dt =

� ∞
0
|wε(t)|2 〈∂tf + Ltf, Ltφ〉 dt =

� ∞
0
|wε(t)|2 (〈∂tf, Ltφ〉+ 〈Ltf, Ltφ〉)dt

=
� ∞

0
|wε(t)|2 (〈Ltf, Ltφ〉 − 〈f, ∂t(Ltφ)〉) dt−

� ∞
0

2wε(t)w
′
ε(t) 〈f, Ltφ〉 dt− 〈f0, L0φ(0)〉 ,

where for the moment we will write the weight function as wε(t) = e−η(t)t−εψ(t), where η and ψ will
be defined later, with the understanding that the chosen functions will make wε(t) smooth with
wε(0) = 1. Endow the space C∞0 (M × [0,∞)) with a norm ‖−‖H given by

‖φ‖H = ‖φ(0)‖2L2
k
(M) + ‖φ‖2V2k,wε(t) ,

and writeH for the corresponding normed space. ClearlyH ↪→ Vk,wε(t). Then define the sesquilinear
form B : Vk,wε(t) ×H → R by

B(f, φ) =
� ∞

0
|wε(t)|2 (〈Ltf, Ltφ〉 − 〈f, ∂t(Ltφ)〉)− 2wε(t)w

′
ε(t) 〈f, Ltφ〉 dt,

and the linear functional F : H → R

F (φ) = 〈f0, L0φ(0)〉+
� ∞

0
|wε(t)|2 〈g, Ltφ〉 .

Now by Cauchy-Scwartz we have

|B(f, φ)| ≤
� ∞

0
|wε(t)|2 (‖Ltf‖L2 ‖Ltφ‖L2 + ‖f‖L2 ‖∂t(Ltφ)‖L2) + 2 |wε(t)|

∣∣∣w′ε(t)∣∣∣ ‖f‖L2 ‖Lφ‖L2 .

Now if
∣∣∣w′ε(t)∣∣∣ ≤ Cwε(t), then we have that

|B(f, φ)| ≤ C
� ∞

0
|wε(t)|2 ‖f‖2L2

2k
dt = ‖f‖2V2k,wε(t) ,
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so that the map W → R given by f → B(f, φ) is bounded. Similarly, integrating by parts and
applying Cauchy-Schwartz gives

|F (φ)| ≤ C ‖f0‖Lk ‖φ(0)‖Lk +
� ∞

0
|wε(t)|2 ‖g‖L2 ‖Lφ‖L2 dt

≤ C

(
‖f0‖Lk ‖φ(0)‖Lk +

(� ∞
0
|wε(t)|2 ‖g‖2L2 dt

)1/2 (� ∞
0
|wε(t)|2 ‖φ‖2L2

2k
dt

)1/2)
= C

(
‖f0‖Lk ‖φ(0)‖Lk + ‖g‖2V0,wε(t) ‖φ‖

2
V2k,wε(t)

)
≤ C

(
‖f0‖Lk + ‖g‖2V0,wε(t)

) (
‖φ(0)‖Lk + ‖φ‖V2k,wε(t)

)
= C

(
‖f0‖Lk + ‖g‖2V0,wε(t)

)
‖φ‖H = C ‖φ‖H

so F : W → R is also bounded.In order to apply Lax-Milgram-Lions we need to check coercivity.
First notice that, using the fact that L is self-adjoint:

∂t(|wε(t)|2 〈φ,Lφ〉) = 2wε(t)w
′(t) 〈φ,Ltφ〉+ |wε(t)|2 (〈∂tφ,Ltφ〉+ 〈φ, ∂t (Ltφ)〉)

= 2wε(t)w
′(t) 〈φ,Ltφ〉+ |wε(t)|2 (〈Lt(∂tφ), φ〉+ 〈φ, (∂tLt)(φ)〉+ 〈φ,Lt(∂t(φ)〉

= 2wε(t)w
′(t) 〈φ,Ltφ〉+ 2 |wε(t)|2 (〈φ, (∂tLt)(φ)〉+ 〈φ,Lt(∂t(φ)〉)− |wε(t)|2 〈φ, (∂tLt)(φ)〉

= 2wε(t)w
′(t) 〈φ,Ltφ〉+ 2 |wε(t)|2 (〈φ, ∂t (Ltφ)〉)− |wε(t)|2 〈φ, (∂tLt)(φ)〉 .

Now

−〈φ(0), L0φ(0)〉 =
� ∞

0
∂t(|wε(t)|2 〈φ,Ltφ〉)dt

=
� ∞

0
2wε(t)w

′(t) 〈φ,Ltφ〉+ |wε(t)|2 ((2 〈φ, ∂t (Ltφ)〉)− 〈φ, (∂tLt)(φ)〉) dt,

so� ∞
0
|wε(t)|2 〈φ, ∂t (Lφ)〉 dt = −1

2 〈φ(0), Lφ(0)〉−
� ∞

0
wε(t)w

′(t) 〈φ,Lφ〉 dt+1
2

� ∞
0
|wε(t)|2 〈φ, (∂tL)(φ)〉 dt.

From this it follows that

B(φ, φ) =
� ∞

0
|wε(t)|2

(
‖Ltφ‖2L2 − 〈φ, ∂t(Ltφ)〉

)
− 2wε(t)w

′(t) 〈φ,Ltφ〉 dt

=
� ∞

0
|wε(t)|2

(
‖Ltφ‖2L2 −

1
2 〈φ, (∂tLt)(φ)〉

)
− wε(t)w

′(t) 〈φ,Ltφ〉+ 1
2 |w(0)|2 〈φ(0), Ltφ(0)〉 .

If we assume Lt is positive definite for all t, then Gårding’s inequality applies to give a constant c
such that

〈φ(0), Ltφ(0)〉 ≥ c ‖φ(0)‖L2
k
.

and
‖Ltφ(t)‖2L2 ≥ c ‖φ(t)‖L2

2k
,

where for the second inequality we use the fact that 〈Ltφ(t), Ltφ(t)〉 = 〈LtLtφ(t), φ(t)〉 , and L2
t is

a positive definite elliptic operator of order 4k. By Cauchy-Schwarz we have

|〈φ,Ltφ(t)〉| ≤ C ‖φ‖2L2
k
≤ C ‖φ‖2L2

2k
.

Furthermore we may write

−1
2 〈φ, (∂tLt)(φ)〉 ≥ −1

2 ‖∂tLt‖L2 ‖φ‖2L2 ≥ −
1
2 ‖∂tLt‖L2 ‖φ‖2L2

2k
,
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where ‖∂tLt‖L2 is the operator norm induced by the L2 norm. Then we obtain

B (φ, φ) ≥
� ∞

0
|wε(t)|2 c ‖φ(t)‖L2

2k
− 1

2 |wε(t)|
2 ‖∂tLt‖L2 ‖φ‖2L2

2k
− Cwε(t)w

′(t) ‖φ‖2L2
2k
dt+ c

′ ‖φ(0)‖L2
k

=
� ∞

0

(
cwε(t)−

1
2wε(t) ‖∂tLt‖L2 − Cw

′
ε(t)

)
wε(t) ‖φ‖2L2

2k
dt+ c

′ ‖φ(0)‖L2
k
,

so we want that
cwε(t)−

1
2wε(t) ‖∂tLt‖L2 − Cw

′
ε(t) ≥ c”wε(t)

for some constant c′′ > 0, so that

B (φ, φ) ≥ c
′′
� ∞

0
|wε(t)|2 ‖φ(t)‖L2

2k
dt+ c

′ ‖φ(0)‖L2
k

= ‖φ(0)‖2L2
k
(M) + ‖φ‖2V2k,wε(t) = ‖φ‖W ,

establishing coercivity.
Fix δ > 0, small enough so that c − δ > 0 and choose any sufficiently large T ∈ [0,∞) so that

‖∂tLt‖L2 ≤ δ when t > T . We will set wε(t) = e−η(t)t−εψ(t), where ε > 0 is an arbitrarily small
number and η(t) and ψ(t) are smooth functions defined as follows. Let χ be smooth cutoff function
which is 1 on [0, T ] and is supported in [0, 2T ). Then define η(t) = a(t− 2T )χ(t), where

a = sup
t∈[0,T ]

1
2C ‖∂tLt‖L2 ,

and let ψ(t) = 1 − χ(t), so that ψ is 1 on
[
T
′
,∞
)
and supported on [T,∞), and so in particular

the weight function wε(t) is smooth and equal to t−ε on
[
T
′
,∞
)

Then notice that we have

wε(t)w
′(t) = −e−η(t)t−εψ(t)

(
e−η(t)t−εψ(t)η

′(t) + εe−η(t)t−εψ(t)
(
ψ
′(t)ln(t) + ψ(t)

t

))
= − |wε(t)|2

(
η
′(t) + ε

(
ψ
′(t)ln(t) + ψ(t)

t

))
.

Since ln(t) is only unbounded near 0 and ∞ (where ψ′(t) vanishes), ψ′(t)ln(t) is clearly bounded.
Similarly, since 1

t is unbounded only near 0 (where ψ vanishes), ψ(t)
t is also bounded. Therefore

ψ
′(t)ln(t) + ψ(t)

t
is bounded, and therefore so is

η
′(t) + ε

(
ψ
′(t)ln(t) + ψ(t)

t

)
since η′(t) = a χ(t) + a(t− T ′)χ′(t), and χ is supported in a bounded interval.∣∣∣wε(t)w′(t)∣∣∣ ≤ C ′ |wε(t)|2 ,
and this gives the boundedness stated above. Then let us analyse the quantity

cwε(t)−
1
2wε(t) ‖∂tL‖L2 − Cw

′(t)

=
(
c− 1

2 ‖∂tL‖L2 + C

(
η
′(t) + ε

(
ψ
′(t)ln(t) + ψ(t)

t

)))
wε(t).

We need that
c− 1

2 ‖∂tL‖L2 + C

(
η
′(t) + ε

(
ψ
′(t)ln(t) + ψ(t)

t

))
≥ λ > 0.
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for all t ∈ [0,∞). For t ∈ [0, T ], by construction this is

c− 1
2 ‖∂tL‖L2 + Cη

′(t)

= c− 1
2 ‖∂tL‖L2 + Ca

= c− 1
2 ‖∂tL‖L2 + sup

t∈[0,T ]

1
2 ‖∂tLt‖L2 ≥ c > 0.

On the other hand, for t ∈ (T,∞) we have that c− 1
2 ‖∂tL‖L2 ≥ c− δ > 0. We also have

η
′(t) = aχ(t) + a(t− T ′)χ′(t) ≥ 0

since aχ(t) is non-negative by construction, χ′(t) ≤ 0 and a(t−T ′) ≤ 0 for t ∈
[
0, T ′

]
and χ′(t) ≡ 0

for t > T
′ . Also note that ε

(
ψ
′(t)ln(t) + ψ(t)

t

)
> 0 (notice that ψ is positive and increasing), so

c− 1
2 ‖∂tL‖L2 + C

(
η
′(t) + ε

(
ψ
′(t)ln(t) + ψ(t)

t

))
= c− 1

2 ‖∂tL‖L2 ≥ c− δ > 0.

Then F and φ→ B(f, φ) are bounded, and B is coercive, so we apply Lax-Lions-Milgram, so that
F (φ) = B(f, φ)

By the Lax-Lions-Milgram lemma this gives the existence of a u ∈ V2d,a(t)(E) such that we have
B(u, φ) = F (φ), for each φ ∈ C∞0 (M × [0,∞), p∗M (E)). This means that

� ∞
0
|w(t)|2 〈∂tf + Ltf, Ltφ〉 dt =

� ∞
0
|w(t)|2 〈g, Ltφ〉

where ∂tf is interpreted in the sense of distributions, with the boundary conditon f(0) = f0. Because
Lt is invertible any section of C∞0 (M × [0,∞), p∗M (E)) is equal to Ltφ for some φ, this implies that
f is a weak solution to the equation ∂tu+ Ltu = f . This also implies that ∂tf ∈ V0,wε(t)(E), since
〈∂tu, φ〉V0,wε(t)

= 〈f − Ltu, φ〉V0,wε(t)
for any φ.

Finally, the last part of the Lax-Lions-Milgram lemma gives the estimate ‖f‖V2k,wε(t)(E) ≤
c
λ ‖F‖ = c

λ supF (φ), and we have shown

|F (φ)| ≤ C
(
‖f0‖Lk + ‖g‖V0,wε(t)

)
‖φ‖H

so that

‖f‖V2k,wε(t)(E) ≤ C
(
‖f0‖Lk + ‖g‖V0,wε(t)

)
.

Since ∂tf = g − Ltu, we have

‖∂tf‖V0,wε(t) ≤ ‖g‖V0,wε(t) + ‖f‖V2k,wε(t)(E) ,

so that

‖∂tf‖V0,wε(t) + ‖f‖V2k,wε(t)(E) ≤ C
(
‖f0‖Lk + ‖g‖V0,wε(t)

)
which is the parabolic estimate in the statement of the theorem. �
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7.1.5. Higher regularity.

Theorem 7.10. Let Lt be a family of elliptic operators of order 2d, converging smoothly as t→∞
to a self-adjoint semi-definite, strongly elliptic differential operator of order 2k denoted by L∞, so
that in particular ||∂tLt||L2 → 0. Assume furthermore that kerLt ⊂ kerL∞ for all t. Let K ⊂ E

a subspace such that kerL∞ ⊥ K so that in particular kerLt ⊥ K. Then there exists a path
of smooth functions η(t) ≤ 0 and ψ(t) ≥ 0 (and vanishing in a neighbourhood of 0) such that
the such that for any ε > 0, the associated weight function wε(t) is smooth, and such that given
any p ∈ N, g(t) ∈ W2d,p,q−1,wε(t)(E,K) and f0 ∈ L2

(2d+1)p, there exists a unique weak solution
f(t) ∈W2d,p+1,q,wε(t)(E,K) to the initial value problem

∂tf(t) + Ltf(t) = g(t)(7.1)
f(0) = f0.

There is furthermore a parabolic estimate of the form

||ft||W2d,p+1,q,wε(t) ≤ C(||f0||L2
(2d+1)p

+ ||gt||W2d,p,q−1,wε(t)),

where C depends only on Lt and the weight functions.

Proof. We will now outline how the inductive argument will work before proceeding with the details.
The proof will be by induction on p and q. Note that the case p = 0, q = 1 is Theorem7.9. Namely,
assume the theorem holds for p − 1, q. In other words, there exists a smooth function wε(t) such
that for each f ∈W2d,p,q,wε(t) and f0 ∈ L2

d(2p+1), so that f and f0 solve the initial value problem7.1
By assumption L−1

∞ exists. Now as before let g(t) ∈ W2d,p,q−1,wε(t)(E,K) and u0 ∈ L2
d(2p+1), and

assume for the moment that the system

∂f̃t
∂t

+ L∞LtL
−1
∞ f̃t = L∞gt

f̃t(0) = L∞f0

has a solution for f̃(t) ∈W2d,p,q−1,wε(t)(E,K). Then if we set f(t) = L−1
∞ f̃(t)

∂ft
∂t

= L−1
∞
∂f̃t
∂t

= L−1
∞ (L∞gt − L∞Ltft) = gt − Ltft,

f(0) = f0,

so f(t) is the desired solution. Clearly f(t) ∈ W2d,p+1,q,wε(t)(E,K) ∩ V2(p+1)d,wε(t)To prove the es-
timate stated in the theorem note that:

‖ft‖2W2d,p+1,q,wε(t)
=

q∑
j=0

∥∥∥∂jt ft∥∥∥2

V2d(p+1−j),wε(t)

≤ ‖∂qt ft‖
2
V2d(p+1−q),wε(t)

+ C
q−1∑
j=0

∥∥∥∂jt f̃t∥∥∥2

V2d(p−j),wε(t)

= ‖∂qt ft‖
2
V2d(p+1−q),wε(t)

+ C
∥∥∥f̃t∥∥∥2

W2d,p,q−1,wε(t)

=
∥∥∥∂q−1

t

(
gt − LtL−1

∞ f̃(t)
)∥∥∥2

V2d(p+1−q),wε(t)
+ C

∥∥∥f̃t∥∥∥2

W2d,p,q−1wε(t)

≤ C

(∥∥∥∂q−1
t gt

∥∥∥2

V2d(p+1−q),wε(t)
+
∥∥∥f̃t∥∥∥2

W2d,p,q−1,wε(t)

)
.



114 SIBLEY

In the second line we have used that L∞f(t) = f̃(t) so that the L2
2d(p−j) norm of ∂jt f̃t controls the

L2
2d(p+1−j) norm of ∂jt ft. In the last line we have used ∂qt ft = ∂q−1

t (gt−Ltft), used the boundedness of
LtL

−1
∞ (and its time derivatives) to bound ||∂q−1

t

(
LtL

−1
∞ f̃(t)

)
||2V2d(p+1−q),wε(t)

by a constant times a

sum of terms of the form
∥∥∥∂jt f̃t∥∥∥2

V2d(p−j),wε(t)
, which we have absorbed into the term ||f̃t||W2d,p,q−1,wε(t)

where they already appear. Applying the parabolic estimate inductively to f̃t we get

‖ft‖2W2d,p+1,q,wε(t)
≤ C

(∥∥∥∂q−1
t gt

∥∥∥2

V2d(p+1−q),wε(t)
+ ‖L∞gt‖2W2d,p−1,q−2,wε(t)

+ ‖Lu0‖L2
2d((p−1)+1))

)
≤ C

(∥∥∥∂q−1
t gt

∥∥∥2

V2d(p−(q−1),wε(t)
+ ‖gt‖2W2d,p,q−2,wε(t)

+ ‖u0‖L2
2d(p+1)

)
= C

(
‖gt‖2W2d,p,q−1,wε(t)

+ ‖u0‖L2
2d(p+1)

)
.

Note that this estimate also shows uniqueness, since if we apply it to the difference of two solutions,
the right hand side is 0, and therefore the two solutions must be equal.

�
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