LONG-TIME EXISTENCE FOR THE CALABI FLOW ON RULED
MANIFOLDS OVER RIEMANN SURFACES

BENJAMIN SIBLEY

ABSTRACT. Let (E,h) — (X, ws) Hermitian vector bundle equipped with a holomorphic structure

Op determining a holomorphic vector bundle £, where the base ¥ is a Riemann surface, and ws

is a Kéahler metric of constant scalar curvature. Consider the projectivisation P(£). We write J for

complex structure on this manifold, and wy (h, J) for the adiabatic Kahler metrics determined by
Fop(g)(l) =+ ’ik?’l’*wz,

where Foﬂ,,(g)u) is the curvature of the hyperplane line bundle over P(£), 7 is the natural map from
the projectivisation, and k& >> 0. Then if £ is simple and moreover satisfies a natural condition on
its Harder-Narasimhan filtration, we prove the longtime existence of the Calabi flow starting from
wg (h, J), verifying a conjecture of Chen in this special case.

1. INTRODUCTION

A central problem in Kéhler geometry is to construct metrics of constant scalar curvature (cscK
metrics) within a fixed Kéhler class [w]. More particularly, one of the main aims of the field is
to characterise the existence of such metrics by an algebraic geometric stability condition. This
problem was solved in the special case of Kéhler-Einstein metrics by Chen-Donaldson-Sun in [CDS],
and is completely analogous to the more classical Kobayashi-Hitchin correspondence, proven in the
1980s by Donaldson, and Uhlenbeck-Yau (see [DO1|, [DO2], and [UY]). The latter result, also known
as the Donaldson-Uhlenbeck-Yau (DUY) theorem, characterises the existence of Hermitian-Einstein
metrics, or equivalently Hermitian-Yang-Mills (HYM) connections; metrics (connections) whose
contracted curvature is a constant multiple of the identity, on a holomorphic vector bundle over a
Kahler manifold. The general cscK problem remains open, and even the precise stability condition
that should be required remains elusive, but there are known algebraic-geometric obstructions to
existence.

Because these canonical metrics arise as the absolute minimisers of energy functionals on certain
infinite dimensional spaces, one approach to the above problems is to consider their the gradient
flows and try to prove their longtime existence and convergence to a minimiser, whenever a suitable
algebraic-geometric condition is met. Due to the infinite dimensionality of the spaces in question,
this is in general a difficult problem, but in the case of HYM connections, this idea was successfully
carried out by Donaldson in [DO1] and [DO2| (at least in the projective setting), where the correct
condition on the bundle is the classical Mumford-Takemato slope stability. The gradient flow is
known as the Yang-Mills flow. More generally, as discussed below, even in the case of an unstable
bundle, the longtime existence and convergence of this flow is in some sense completely understood
on a general Kéahler manifold. The gradient flow designed to find cscK metrics when they exist is
known as the Calabi flow. This is a fourth order parabolic equation for a path of Kéhler metrics,
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and in contrast to the Yang-Mills flow, relatively little is known about it in complex dimensions
>1. It is much more difficult to show that it achieves its goal of finding the cscK metric when one
exists, before even considering the study of the longtime existence and asymptotic properties in
general. Indeed, when the complex dimension is at least 2, there are very few examples of complex
manifolds such that the flow starting from a given Ké&hler metric has been shown to exist for all
time. The purpose of the present paper is to rectify this situation somewhat by attacking the long-
time existence problem in the special case of a projective vector bundle over a Riemann surface,
where we may exploit the existence and long-time behaviour of Yang-Mills flow.

1.1. The gradient flows in general. In both of the problems discussed above there are two
different points of view one may take. In the cscK case, one may fix a complex manifold (X, .J) and
look for a compatible cscK metric g; (or Kahler form wy), or fix a symplectic form w and search
for a compatible integrable almost complex structure J(w) so that the resulting metric g(w, J(w))
is cscK. Similarly, on a complex vector bundle E over a fixed Kéhler manifold (X,w), one may fix
either the holomorphic structure (equivalently d-bar operator) & = (E,dg) or the hermitian metric
h, and vary the other structure, with the aim of finding either an Hermitian-Einstein metric hg, or
an HYM holomorphic structure (equivalently Chern connection) A = (9g, h).

This duality gives rise to two parallel variational problems corresponding to energy functionals
on two different spaces. Namely, in the bundle setting, the most natural functional to consider for
a fixed Hermitian bundle (E, h) is the Yang-Mills energy

(1.1) YM : ANE) >R
A = / |Fa|* dvol
X

where .A}lb’l (E) is the space of integrable, metric connections. In the cscK problem, if we fix a Kéhler
manifold (X, Jo, g, w) and write J" (X, w) for the space of w-compatible integrable almost complex
structures, then the natural functional is the Calabi energy:

(1.2) c : J"™X,w) =R
J - / (Scal(J))? dvoly,
X

where Scal(J) is the scalar curvature of the metric associated to w and J. Then HYM connections
and cscK metrics respectively arise as the absolute minimisers of these functionals.
The negative gradient flows of these functionals are given by

0A

t *
and
dJ; 1
(14) E = _EJtQJtscal(Jt))a
or equivalently
dJ;

T %EReVLOScal(Jt)Jt-
Equation is known as the Yang-Mills flow. Equation is implicit in the work of Donaldson
(see [DO3]), but to the author’s knowledge, it first appeared explicitly in the paper [CS] by Chen
and Sun, and so we will refer to it as the Chen-Sun flow.

It is convenient for many purposes (again as in [DO1| and |[DOZ2]), to take the alternative point
of view and consider certain functionals on the space of Hermitian metrics Herm™ (E) and Kéhler
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potentials H,, such that the Hermitian-Einstein metrics and cscK metrics are global minimisers.
These two functionals called the Donaldson functional and the Mabuchi energy respectively, are
slightly more difficult to describe, but their gradient flows are easy to write down and are given by:

_10h
(1.5) h; laTt = —2(AuF5, 5, — tuo(E)Idp)
and
(1.6) 85: = —i0;05Scal(wy),

where y1,,(E) is the slope of the bundle E and w; = w+1i0;0,;¢;, for a some path of Kihler potentials
¢:. Equation is called the Hermitian-Yang-Mills flow (or Donaldson heat flow), and was
employed by Donaldson in [DO1]| to prove the long-time existence of Equation on a general
Kahler manifold, a critical first step in the proof of the DUY theorem. Equation is built to
find CSK metrics, and is the main object of study in this paper. It is called the Calabi flow. It’s
clear that the fixed points of these flows are precisely the Hermitian-Einstein and cscK metrics
respecitively.

In each of these problems, there is a natural groups of symmetries. In the HYM problem we may
consider the group G(FE, h), of unitary gauge transformations, which are smooth isomorphisms of
E preserving the metric h. In the cscK case one may consider G(X,w), the group of Hamiltonian
symplectomorphisms of the symplectic manifold (X, w). The actions of G(E, h) and G(X,w) preserve
the spaces A,ll’l(E) and J™(X,w), as well as the two flows|1.3|and The two functionals defined
above descend to the quotients by these actions.

Equations [I.3 and [I.4) and Equations [I.5] and [I.6] are equivalent in the sense that given solutions
to the former one may construct solutions to the latter in a natural way, and the converse is true
up to the action of the of the groups G(E,h) and G(X,w) (see either [DO1| Section 1.1, [DOKR]
Section 6.3.1, or also Section below for the Yang-Mills flow, and |CS] Lemma 5.1 for Calabi
flow). Note that equations and are parabolic, whereas equations and are not due to
the invariance under the symmetry groups. The advantage of the first two equations however, is
that whereas the HYM flow and the Calabi flow must blow up in infinite time in the case that no
canonical metric exists, their analogues with moving holomorphic structure may still converge in
the absence of such a fixed point.

Indeed, for the Yang-Mills flow this is a well-studied problem. Using deep gauge theoretic results
of Uhlenbeck see [U1] and [U2] one may see easily that on a general Kéhler manifold, a subsequence
along this flow has a limit in a certain generalised sense. The limiting connection can be singular
in complex dimensions > 3, and can live on a different topological bundle if dim¢c = 2. Moreover
the convergence must take "bubbling" phenomena into account. When the base is a Riemann sur-
face however, these phenomena do not appear, and the convergence is in the usual C*° sense.
Going further Daskalapoulos |[D] proved that in fact the limiting connection is independent of
the subsequence chosen, and the flow converges to a connection determined by a certain canonical
algebraic-geometric object derived from the Harder-Narasimhan filtration of the initial holomorphic
bundle & (see Theorem [3.5|below). In particular, the limit will in general merely be a critical point
of the functional a so-called Yang-Mills connection, when the bundle & is not stable, rather
than a minimiser. The Yang-Mills connections are direct sums of Hermitian-Yang-Mills connections
on direct summands with possibly different slopes. In general then, the holomorphic structure in-
duced by this limiting connection will be different than that of the original bundle; this phenomenon
is the well-known "jumping" of holomorphic structures. There are also generalisations of the result
of Daskalapoulos to higher dimensions that deal with bubbling and the various singularities that
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occur (see [DW1], [DW2], [S], |[SW]). In the event that the bundle admits a Yang-Mills connec-
tion already, these theorems imply the convergence of the flow to this connection. In this case the
jumping phenomenon does not occur.

The theory of cscK metrics and the Calabi flow is far less developed, although conjecturally a
similar sort of picture exists. In the first place, there is no analogue of the DUY theorem, and
although one expects the existence problem to again be equivalent to some notion of stability (this
is commonly known as the Donaldson-Tian-Yau conjecture), it remains unclear what the precise
condition is, as K-stability, which is sufficient in the Kéhler -Einstein problem (this is precisely the
CDS theorem) is unlikely to be sufficient in general (see [ACGTE]). A good replacement candidate
was given by Szekelyhidi in [SZ2|. Still more generally, one could also consider the analogue of the
Yang-Mills connections in this setting, which are the critical points of the functional [I.2] namely,
solutions of the equation

(17) EReVLOScal(J)J = 0.

The resulting Kéhler metrics are known as extremal metrics.

Even less is known about the flow. Indeed even longtime existence is, in general unknown (see
the discussion of Chen’s conjecture below). Notice that the fixed points of the flow are precisely
the solutions to When such a critical point in the isomorphism class of a complex structure Jy
exists, we expect it to be realised as the limit of the Chen-Sun flow. More generally, if any such
holomorphic structure exists, then the Chen-Sun flow should converge to it starting from any Jy,
where now the same jumping phenomenon as in the Yang-Mills case will occur. More precisely, we
have the following conjectures.

Conjecture 1.1. (Chen) The Calabi flow, starting from any Kdhler metric exists for all time.

Conjecture 1.2. (see [DO3]) (Donaldson) Let (X, Jo,wo, go) be a Kihler manifold. Given a long-
time solution wy to Calabi flow starting from wg (inducing a solution J; to equatz’on one of the
following four conditions is satisfied:

o A cscK metric exists and Calabi flow converges to it.

e An extremal holomorphic structure Jo exists in the isomorphism class of Jy and equation
converges to Jx.

o An extremal holomorphic structure Jo, exists in a different isomorphism class, and equation
converges to Jo, giving rise to an extremal metric on on a different Kdahler manifold
with the same underlying smooth structure.

o The equation converges to some sort of singular complex structure Joo.

The author has been unable to track down a precise reference for the first conjecture, but it
is widely acknowledged to be due to X. Chen. Progress towards proofs of conjectures [I.I] and
[[.2] has been slow so far. Both conjectures are known to be true in the case of Riemann surfaces
(see |C|, |Ch]), where it is clearly the first case of Conjecture that is satisfied. For complex
dimension greater than one, very few general results are known even about Chen’s conjecture. The
short-time existence of Calabi flow is known (see [CH]). The strongest results proven to date, also
from [CH], are that the flow exists for all time and converges to a cscK metric when it is started
sufficiently close to such a metric, and will exist for all time if the Ricci curvature remains bounded.
Particular examples where Conjecture is true may be found in [CH2|, [FH|, and [SZ]. To the
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author’s knowledge this is essentially an exhaustive list of known example, and all of these exploit
very particular symmetries of the geometries under consideration.

In the last three cases of Conjecture the stated convergence should exhibit the failure of
stability in a natural way, namely the limit should be the central fibre of a destabilising "test
configuration". By analogy with the Yang-Mills setting, one might also expect the last case to
give rise to a singular extremal metric in a sufficiently general sense. Some progress towards this
conjecture has been made in [CSW| and [LWZ].

1.2. Ruled manifolds over Riemann surfaces. Let (E,h) — (X,wy), be an Hermitian vector
bundle where the base ¥ is a Riemann surface, and wy, is a metric of constant scalar curvature. If
we fix a O operator on F, this determines a holomorphic vector bundle £. If we write (’)P(S)(l) for
the hyperplane bundle over the projectivisation P(£), then for sufficiently large k, the two forms
FOP(g)(l) + ikm*wy, where FOP(£>(1) is the curvature of O]P)(g)(l), equipped with the metric induced
by h, determine Kéhler metrics on P(£). In this paper we will study Conjecture for the flow
starting from these metrics.

1.3. Adiabatic limits, and previous results. The basic idea to prove long-time existence in this
case is the notion of an adiabatic limit. This technique has been employed succesfully in a large
range of geometric situations, and particularly in the construction of canonical Kéhler metrics on
various kinds of fibrations. One wants to solve an equation of the form F'(g) = 0, and by stretching
the base by a factor k£ (as we have done in our definition of wy(h, J) above), we produce a family
of metrics and therefore obtain a family of equations of the form F(g;) = 0. The adiabatic limit is
the equation obtained by formally setting & = oo, and may be thought of as approximation to the
original equation for large k. With a solution to this equation in hand, we can in priniciple obtain
a genuine solution to original equation for large enough k by using the implicit function theorem
to perturb the adiabatic solution.

The first result in Kéhler geometry along these lines was that of Hong [H|. He considers the
fundamental question of when the manifold P(£) admits a cscK metric. Here the function F is the
scalar curvature (and the metric g is our adiabatic metric), and by expanding the scalar curvature
in powers of k~! one may see that the adiabatic limit of this equation is precisely the Hermitian-
Einstein equation. Hong’s precise theorem is that for sufficiently large k the class [wg(h, J)] admits
such a metric of constant scalar curvature if £ is simple and admits an Hermitian-Einstein metric,
and the base manifold Y (which in his case is allowed to be of arbitrary dimension), admits no
holomorphic vector fields. By the DUY theorem, the hypotheses on £ are exactly the hypothesis
that & is slope stable. In a later paper [H3] Hong is able to relax the assumption on the simplicity
of the bundle and the existence of vector fields on Y, by instead assuming the vanishing of a certain
Futaki invariant.

A construction of cscK metrics on fibrations X — X, where both ¥ and the fibres of X are
Riemann surfaces of genus > 2 was given in [F]| by Fine. It is based on the same geometric idea,
although the details differ substantially, since the fibres of X admit moduli in this case.

Most relevant to the present paper is the article of Bronnle |B|, which generalises [H|, and
considers the case P(£) — (Y,wy ), where Y admits no holomorphic vector fields and wy is a cscK
metric. It is known by work or Ross and Thomas [RT] that if £ is strictly unstable, then P(E)
cannot admit a cscK metric. Bronnle’s theorem is that when &£ splits as a direct sum

E=61D- D&,
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of stable bundles &;, all of which have different slopes p., (&;), then the adiabatic classes admit
extremal metrics. Note that the condition on £ is just the condition that there is a Yang-Mills
connection that gives a holomorphic structure in the isomorphism class of £ (with the additional
restriction on the equality of the slopes). Correspondingly, in this case the adiabatic limit is the
general Yang-Mills equation

dyF =0.

In passing, we mention that a wide ranging generalisation of all of the above results is given by
Dervan and Sektnan (see [DS1], [DS2] and [DS3|). They consider the case of a general holomorphic
submersion X — Y, where Y is a polarised manifold, and X has relatively ample line bundle.
The adiabatic limit in this situation is a new equation, known as the optimal symplectic equation
(respectively extremal symplectic equation), which generalises the notion of the HYM equation
(respectively Yang-Mills equation).

1.4. Overview of the proof. The strategy of proof of all of the above theorems (see for example
[F]), essentially follows the same trajectory, employing the adiabatic limit technique sketched above
in a very precise way. Namely, the idea is to consider either the cscK or the extremal metrics as
the zeros of a smooth map

F:V->W

between two suitably defined Banach spaces. Then given a solution to the adiabatic limit equation,
wi(h, J) will at least formally provide a solution to F(g) = 0 up to order k~2. In order to obtain
increasingly better approximations to this equation, one adds Kéhler potentials to wg(h,J) in an
attempt to eliminate the various terms of higher and higher orders in k~'. This involves solving
various linear elliptic pdes, the solutions of which are guaranteed by the geometry of the situation
in question. One then shows that the approximation is in fact genuine, in the sense that it holds
in the Banach space norm on W, rather than merely pointwise. Having established this, if one has
suitable control on the linearisation dFy, as well as on F' — dFjy, then the quantitative version of
the inverse function theorem will give an exact solution to the problem.

To solve Calabi flow, starting from wg(h, J) on the projectivisation P(E) of our bundle (E, h) —
(3, ws), where we have fixed some holomorphic structure dg, we would like to follow a similar
strategy. However in all of the above scenarios, the equations under consideration are time inde-
pendent, and in particular elliptic. As far as the authors are aware, the present work is the first
example of a parabolic problem being solved in this way. The parabolic setting throws up several
technical difficulties that do not occur with elliptic equations. First of all, for elliptic equations, the
choice of the spaces V' and W is more or less obvious, namely they will be Sobolev spaces with
enough regularity to make things work. Once the geometry of the situation at hand is properly
understood, the standard existence and elliptic regularity results may be applied, so that we ob-
tain solutions to the required linear elliptic equations, with good estimates on the solutions in the
chosen Banach spaces. Thus one may immediately conclude that a formal approximate solution is
an approximate solution in the Banach space sense.

The first questions that one might naively ask are what the adiabatic limit of the Calabi flow
is, and what the correct choice of V and W are for the problem at hand. It is relatively easy to
see that in this case the adiabatic limit, as one might expect, is the HYM flow. That is, if we flow
the metric h according to equation then we obtain a path wy(h¢, J) Kéhler forms that formally
solves the equation

(1.8) Ol I) 4 380y Seal(wn(he, 1)) = K~234(),
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where for each ¢t we have a pointwise estimate
ok (1) < C,

where C is independent of k. We would like to define some sort of parabolic Sobolev spaces in which
this inequality is true in the parabolic norm. There are several interlocking difficulties in doing this.
First of all, one must to some extent develop the parabolic theory on compact manifolds. One source
for this is the appendix of a paper by Huisken and Polden [HP|. In order to define a suitable norm
that makes the parabolic theory work, a natural idea is to integrate the usual Sobolev norms (and
the Sobolev norms of the derivatives in time) over the real line, but one has to build a certain weight
function into the definition as well to insure the integrability of these quantities. In [HP] this is
just an exponential function, because in their applications exponential convergence at infinity is
guaranteed. One now encounters a problem, because we want to show that oy (¢) is actually bounded
in this norm when k is large. However this quantity depends on the HYM flow, which blows up in
infinite time unless the holomorphic bundle £ is (poly)stable.

The way out is to change viewpoints, and consider the Yang-Mills flow, equation [I.3] instead
(strictly speaking one must work with a sped up version). In other words we consider the path of
metrics wi(h, Ji), where J; is the holomorphic structure on the smooth manifold P(E) corresponding
to the connection A; on E along the flow. The flow A; is determined entirely by a path of complex
gauge transformations g;; that is A; = g (Ag) for some g; € G, where G€ is the group of smooth
automorphisms of F. Since ¢; also relates the Yang-Mills and Hermitian-Yang-Mills flow pictures,
for the diffeomorphisms g; of P(F) that they induce, we may write

9i (wi(h, Ji)) = wi(hs, J).

The path of metrics wg(h, J;) therefore gives a solution of equation up to the diffeomorphisms
gi, or more precisely, the equation

aOJk(h, Jt)
ot

where V; is the (time-dependent) generator of g; and oy (t) = (g; ')*(Gx(t)). Notice that this is
now an equation on the moving complex manifold (P(E), J;). The point here is that while g; and
therefore g; fails to converge at infinity, destroying convergence of HYM flow, nevertheless the
Yang-Mills flow itself converges (see Theorem below), so the function o (t) will also converge,
and there is hope of defining a parabolic norm such that this quantity is finite in the norm (and
bounded in k).

However, here we encounter another issue, which is that (again unless the holomorphic structure
defined by Ay is polystable) the Yang-Mills flow does not converge exponentially, so we cannot
use the analysis of [HP| as is. On the other hand, in [R], Réade, has shown that on a Riemann

(1.9) +i0 7105, Scal (wi(h, J1)) + Ly, (wi(h, Jp)) = k205(t),

surface, for a general initial condition Ay (inducing some arbitrary holomorphic bundle &) the flow
converges at a rate of 1/v/t (again see Theorem . Then the first technical challenge is to find
an appropriate weight function for the norm, so that ||ox(¢)|| is bounded, and at the same time the
Lax-Milgram argument used to establish the linear parabolic existence and regularity theorems on
compact manifolds in [HP| goes through.

Once this has been established, in a similar fashion to the elliptic versions of the problem, we may
perturb the metrics wg(h, J;) by adding paths of Kéhler potentials to eliminate the higher order
terms in equation Writing out the effect of this on the scalar curvature, one sees that these
potentials must satisfy various linear parabolic equations. By the argument described in the previous
paragraph, we may find long-time solutions to these equations with estimates in the parabolic norm.
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This means that we obtain metrics wy, ;(t) solving the analogue of equation where the right hand
side instead has a factor of k~! for [ arbitrary, and moreover where the parabolic norm ||o (t)]|
of the function it multiplies, is still bounded. Furthermore, using the convergence of Yang-Mills
flow, and the linear parabolic theory, the metrics wy, ;(¢) will converge at infinity to Kahler metrics
Wk,l,00-

The elliptic operators that appear in the parabolic equations we obtain are time dependent in
some cases. In particular we obtain an equation involving the Laplacian on sections of E, depending
on the connections A; along the Yang-Mills flow. In order to apply the parabolic theory, we require
that the right hand sides of our equations be orthogonal to the kernels of these operators, and also
to those of their limits at infinity. For this we require two geometric hypotheses on the bundle.
The former property is assured by the assumption of simplicity of the holomorphic bundle . The
latter can be guaranteed if we know that the limit of the Yang-Mills flow at infinity is a Yang-
Mills connection giving rise to a bundle that splits as a direct sum of stable bundles, all of which
have different slope. By Theorem [3.5 below, this will happen precisely when another, fairly natural
hypothesis on the initial holomorphic bundle & = &y is put in place, namely that its Harder-
Narasimhan filtration is equal to any of its Harder-Narasimhan-Seshadri double filtrations; or in
other words, the direct summands that appear in the associated graded object Gr(&p) of the Harder-
Narasimhan filtration are already stable. Notice that by the result of Theorem as well as our
assumption on &y, the metrics wy, ;o live on the manifold

(P(E), Joo) = P(Ec) = P(GT (&),

appearing in the limit, which is precisely an instance of the manifolds considered in [B].
The simplest example of a bundle satisfying our hypotheses is a rank two bundle given as a
non-split extension

0L —=E—>Ly—0

of two line bundles with deg £; = 1 and deg L2 = 0, and ¢g(X) = 3. The bundle £ can be shown to
be simple (see Example for details). Morover, the Harder-Narasimhan of this bundle is precisely
the inclusion £1 — &, and the associated graded object is

GT(S) =L1D L.

The summands are stable (since they are line bundles), and by assumption have different slopes.
Note there are no previous results in the literature proving long-time existence of Calabi flow even
in this very simple case.

Once the approximate solution has been found, then the idea is to use the implicit function
theorem to find an exact solution, as described above, just as in the elliptic versions of the problem.
Here again, we encounter difficulties. First of all, one needs to construct a map between two different
Banach spaces, the zeros of which will give a solution to Calabi flow. The natural impulse is to try
to define such a map using the operators F; given by the right hand side of Equation (except
using the metrics wy (t)), between two parabolic Sobolev spaces, imitating the elliptic problem.
Here, we think of this as defining a map on functions by adding potentials to the metric inside all
the operators involved. One needs to reprove the existence of such a map in the time dependent
setting, since the result does not follow immediately from the static case, where the spaces are
ordinary Sobolev spaces.

A further issue is that the operators F; do not converge to zero, but rather to an operator Fi,
which by construction is the extremal metric operator (see equation employed by Bronnle
in [B], which we think of as a map between two ordinary Sobolev spaces. Therefore, in order to
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obtain a well-defined map at all, it must actually be given as the difference
Dy =F, — Fy.

Note that the F; satisfy the property that their pullback by the diffeomorphisms g; is precisely the
left hand side of Calabi flow. Notice also that Dy, rather than being a map on a single Banach
space is now a map on a product of two spaces. Then the inverse function theorem will provide a
perturbation giving a solution to the equation

Ft(¢t):F00(¢OO)-

Since the equation Fj (¢;) = 0 is equivalent to a solution to Calabi flow, we should simultaneously
solve Foo (¢oo) = 0. Therefore our next guess at a map that will acheive the desired result, is one
of the form

Cy Wi x Vi — Wy x V5

where Wy and Wy are the parabolic spaces, and V; and V5 ordinary Sobolev spaces, and
Ct == (Dtu Foo)

We may follow the argument of [B] to produce a solution to the second equation, and the hope
would be to employ a time-dependent version of the perturbation given there to solve the first.
A subtlety of this strategy, is that finding an extremal metric is tantamount to finding a a pair
(oo, Vo) Where ¢ is @ smooth function (initially in some Sobolev space) and Vi is a Hamiltonian
Killing vector field, such that the scalar curvature of the metric obtained by adding the potential ¢,
is a Hamiltonian function for Vi, (see Equation below). In other words, one has the additional
freedom of perturbing V. This is what is done in [B]. In order to make the inverse function theorem
argument work, one needs surjectivity of the linearisation of the map F, which is essentially the
Lichnerowicz operator. This will not be true for F., itself, which involves the Hamiltonian function
for a certain Hamiltonian Killing vector field arising naturally in [B], but will if we replace this
function with a certain perturbation F, obtained as the Hamiltonian function of a close-by vector
field ‘700. The point here is the the kernel of the operator in question is exactly the space of
Hamiltonian Killing fields. By the simplicity assumption on our bundle &y, there are no non-trivial
holomorphic vector fields on P(&p), and therefore there are also none on P(&;) for any ¢ (the Yang-
Mills flow preserves the complex gauge orbit). However, the limit P(£) does indeed possess such
vector fields, and it is our assumption on the Harder-Narasimhan filtration of & that allows us to
characterise these precisely enough to eliminate the kernel.

The problem with this from the point of view of the time dependent part of the map C, is that
now the operator F; — Fo is not well defined as a map into the parabolic Sobolev space (W5 in the
schematic above), because it is Fy, and not ﬁoo to which F; converges. We therefore have to find
a perturbation F} for which this holds. However the naive choice (obtained by modifying F; in a
similar way by perturbing the vector field slightly) will result in an operator a zero of which does
not produce a solution to Calabi flow on any time interval. This is because it is solutions of the
equation

&ut

ot
which pull back to solutions of Calabi flow under g;, and modifying the vector field V; destroys this
effect.

Our solution is to introduce a cut-off function, so that we obtain a path of operators converging
to ]500, but (the pullback of which) gives a solution to Calabi flow up to some large time S. We

+104,07,Scal(wt) + Ly, (w) =0
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therefore obtain an entire one-parameter family of operators F° as above, and so if we can make
the correct perturbation for every S, we will obtain a longtime solution to Calabi flow.
To summarise, our main theorem is the following.

Theorem 1.3. Let £ — X be a simple holomorphic vector bundle over a compact Riemann surface,
and assume furthermore that the associated graded object of the Harder- Narasimhan-Filtration only
contains stable factors. Let wy, be a constant scalar curvature metric on X3, h an hermitian metric on
the underlying smooth vector bundle E, and J the holomorphic structure on the projectivisation P(E)
induced by . For k >> 0 let wy(h, J) be the Kihler metric on P(E) defined by iF0pe)(1),1) + kwy, in
the adiabatic Kihler class 2mc1 (V) + klws], where Op(g)(1) is the hyperplane bundle, (Opg)(1), h)
is the Chern connection induced by h, and V is the vertical tangent bundle of P(E). Then the Calabi
flow on P(E) starting at the metric wi(h, J) exists for all time.

1.5. Outline of the paper. In Section [2| we give some background on cscK and extremal metrics
as well as Calabi flow. We define the Calabi map between certain parabolic Sobolev spaces, to be
used in Sections [5]and [6] below, and show that it is well-defined and smooth. In Section [3] we discuss
Yang-Mills theory on a smooth, hermitian bundle over a Riemann surface, and in particular the
HYM and Yang-Mills flows, and give the critical convergence theorems of Rdde and Daskalapoulos.
In the process we discuss the Harder-Narasimhan filtration, and describe the geometric conditions
we will put on our initial holomorphic bundle &. We give some simple examples of bundles over
a Riemann surface such that satisfy the condition of our main theorem. In Section {4] we consider
the manifolds of interest in this paper, namely the projectivisation P(&y) and the manifolds P(&;)
determined by Yang-Mills flow, as well as the limit of these manifolds at infinty P(€x) = P(Gr(&))).
We construct the Kéahler metrics wg(hy, J), wi(h, Ji), and wg(h, J) on these manifolds alluded to
above, and collect various facts regarding the geometry of this setting, to be used in the sequel.

The heart of the proof is contained in Sections [fland [6] In Section [p|we construct the approximate
metrics wy ;(t) (see Theorem below). We begin by showing that the metrics wy(he, J), wg(h, J;)
actually give formal approximations to Calabi flow up to order 2. We then verify that, for wy(h, J;)
this approximation persists in the parabolic Sobolev norm. The meat of Section [5]is to pass from
w(h, J¢) to the metrics wy2(t) (and their pullbacks @y 2(t) under g;) by adding certain Kéhler
potentials to the metric. Here we must pass back and forth between moving metric and moving
holomorphic structure pictures, as certain calculations are more easily performed in one or the
other framework. We construct the various linear parabolic equations that must be solved, and find
solutions with parabolic estimates with the aid of Proposition to obtain a formal solution up
to order k3. Finally we apply Proposition as well as the linear parabolic estimates, to prove that
the this estimate can again be validated in the norm of the parabolic space. In the last subsection
of section [5] we show how to perform the inductive argument to obtain this estimate for all orders.

In Section @ we make the above schematic for our map between two (products of) Banach spaces
rigourous, applying Proposition 2.7 gradually building up the correct map following the discussion
above. We then consider the linearisation of this map, and prove its surjectivity. We prove a certain
estimate on the operator norm of its inverse in the parabolic Sobolev space. Here we are helped by
results in the elliptic case from cite [F], and [B]. We finally estimate the non-linear part of our map,
giving us all the tools to apply the implicit function theorem, and therefore a longtime solution in
the parabolic space, carrying out the sketch given previously. Since we may take the regularity to
be as high as we like, we actually obtain a C°° solution to the flow for all time.

In the Section [7, the appendix, we give our version of the linear parabolic theory, proving the
main existence, regularity and convergence results that we need.
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1.6. Outlook. Clearly the restrictions we have place on both the bundle £ and on the dimension
of the base Y, are unsatisfactory. We suspect that the hypotheses on £ are an artifact of the
proof, and with more work, it should be possible to remove these. It should also be within reach
to prove the convergence of the Chen-Sun flow to the extremal holomorphic structure in the
case considered in the present article. Moreover, given what we have done here, it should be a
straightforward problem to prove long-time existence and convergence to the cscK metric when
the base manifold (X,wx) and the bundle & satisfy the conditions of Hong’s theorem in [H|, even
when X has arbitrary dimension. This is because when & is stable the HYM flow actually converges
exponentially, so we avoid most of the difficult technical problems addressed above.

A more difficult problem is to study the case of higher dimensional base manifold when £ is not
stable, even if the base has a constant scalar curvature metric. There are two major issues here.
First of all, there appears to be no analogue of the result of Rade about the rate of convergence
of the Yang-Mills flow, even when the flow converges smoothly. Even more seriously, although the
higher dimensonal version of the result of [D] has already been proven (see [DW1], [S]), the Yang-
Mills flow can develop singularities along holomorphic subvarieties in infinite time (see [HT]). On
the other hand, by [SW] (for surfaces see also [DW2]), this singular set is precisely the singular
set of associated graded sheaf Gr(&y) of the Harder-Narasimhan-Seshadri double filtration. Note
that in higher dimensions this filtration is given by subsheaves rather subbundles, and therefore its
graded object is singular in general.

With all of this is mind we can give a slightly more precise version of Donaldson and Chen’s
conjectures and for ruled manifolds.

Conjecture 1.4. Let (E,h) — (X,wx) be an Hermitan vector bundle over a Kdhler manifold
with constant scalar curvature, and let Ag be an integrable, unitary connection determining a holo-
morphic bundle &. Consider the adiabatic metrics wi(h,J) = Fo, . 1) + ikm"wx on P(&). Then
for sufficiently large k the Calabi flow starting from these metrics exists for all time and one of
four things occurs:

o A cscK metric on P(&) exists in [wi(h, J)] and Calabi flow converges to the cscK metric.

e An extremal metric exists on the manifold P(Ey) in [wy(h, J)] and the flow[1.]] converges
to the extremal holomorphic structure, which is isomorphic to P(&y). This happens exactly
when &y splits as a direct sum of stable bundles.

o No extremal metric on P(&y) in [wi(h, J)] exists, but an extremal metric exists on P(Gr(&y)),
which is a complex manifold, the Yang-Mills flow on E converges smoothly without bubbling,
and the Chen Sun flow[I.]) converges to the extremal holomorphic structure, which is pre-
cisely that of the P(Gr(&y)). This happens exactly when the Harder-Narasimhan-Seshadri
double filtration &y consists of smooth subbundles.

o No smooth extremal metric exists even on P(Gr(&y)), which is singular, but some sort
of singular extremal metric does exist on this space. The Yang-Mills flow converges with
singularities along the holomorphic subvariety of X, determined by the sheaf Gr(&y). The
Chen-Sun flow converges smoothly outside of the singular set Sing(P(Gr(&y)) to the
stngular holomorphic structure determined by this space, and this structure determines the
stngular extremal metric.

As we have discussed, the first case appears to be relatively straightforward. In the present paper
we have made progress towards this problem in the third case when the base is a Riemann surface,
and a complete proof in this case ought to be in reach. In higher dimensions, this problem could be
approachable using a similar strategy to the one employed in this article, if the requisite analogue
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of the result of Rade [R] could be obtained. The same is true of the second case listed above, which
is an easier version of the same problem. The last case is that of a general unstable bundle in higher
dimensions, and appears to require a completely different approach. Here even the extremal metric
problem seems not to be properly understood, but to understand what sort of structure should
appear in the limit, one might attempt to prove some sort of singular version of the theorem in [B],
starting from a direct sum of the singular HYM connections constructed in [BS].

Acknowledgments. The author gives his profuse thanks to Joel Fine, who was originally a co-
author on this paper, who suggested to him that longtime existence for the Calabi flow on projective
bundles could be approached via an adiabatic limit method, and from whose expertise he has
benefitted over a number of years through discussions about this project. The author also thanks
him for his comments on an earlier draft of the present manuscript. Throughout work on this
project, the author was supported by a "DyGeSt" grant as well as an FNRS "Chargé de recherches"
fellowship while at the Université Libre de Bruxelles. He was funded by the Simons Center for
Geometry and Physics while at Stony Brook.

2. CANONICAL METRICS, THE CALABI FLOW, AND OPERATORS ON PARABOLIC SPACES

Our discussion in this subsection is entirely general. Throughout, we fix a Kéhler manifold

(X,w, g). We will write J for the almost complex structure associated to the complex structure on
X.

2.1. Extremal and cscK metrics. We define the space of Kéhler potentials in the Kéhler class
[w] B
Hey ={¢ € C®(2)|w+ 105050 > 0},
and will write wy = w +10,9;¢ for ¢ € H,,.
The Ricci curvature of an hermitian metric g on X , is defined to be

p=tr(F(g)),

where F(g) is the Riemannian curvature of the metric g. Recall that g may be thought of as an
element of T'(T*X ® T*X). A basic lemma in Kéhler geometry is that he Ricci form p is equal to
iFks (g), @ times the curvature of the induced metric on the anti-canonical bundle K%, which is an
element of I'(Kx ® K x), and that the latter is fact given by ‘;’L—T € I'(Kx ® Kx), so that in local

coordinates one may write:

n

(2.1) p(w) = i0;0; log %,

so that p is in fact a closed, real (1, 1) form.
The scalar curvature is by definition

(2.2) Scal (w) = App (w) .

Here A,, is contraction with the Kéhler metric. In local coordinates, for a (1, 1)-form o = o jdzi A

dz, ~
Ao = g @, 5

A metric is called constant scalar curvature Kahler or cscK, if the scalar curvature is a constant

function. We will write

Scal, : H,— C®(X)
b Scal(w+i5J6J¢),
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we € [w] is cscK if and only if
Scaly, (¢) = ¢,
for some constant c.
The most natural functional on H,, to consider is the Calabi functional

¢ : H,—R
o — / (Scal (w¢))2 dvol,,.
b's

A metric is called extremal if it is a critical point of this functional. Note that the average scalar
curvature is a topological constant:

Scal (w) = ! / Scal (w) dvol, =
X

_ 2mne (X) U [w]™
vol(w) ’

[w]”

Then since
) \2 \2
/ (Scal (w))” dvoly, :/ (Scal (w) — Scal (w)) dvolw+/ (Scal (w)) dvol,,
X X X

cscK metrics are also the minimizers of the functional given by the first term on the right hand .
The Euler-Lagrange equations of C' are given by the equation

(2.3) D (w,7)Scal(w) = 0,
where
Dw.s) : C(X,C) » NAY X @ TX)

is the Lichnerowicz operator defined by

D(w.s) = 0s(V;°0),
where V;’Ogb = %(Vg(b —iJVy¢) € THX, or in local coordinates

V1% = g050,

is the (1,0) part of the of V ¢. In other words, a metric is extremal if and only if the (1,0) part of

the gradient is a holomorphic vector field.
We define the Lie algebra

h={V e H"(T"°X) |V =V} for some ¢ € C*(X,C)}.
We define the space of holomorphy potentials
5’_') =ker Q(UJvJ)'

Note ¢ is determined by V;’O(b up to a constant, so dim $) = dim h 4+ 1. The operator Q?w, J)D(% 7)
is self adjoint, so

(24) ker C‘D)(kw’(])@(w7j) = ﬁ
The following is a standard result (see for example [LS]).

Lemma 2.1. The following two statements hold.
(i) A vector field W € T (T*°X) is holomorphic with zeros if and only if W € b, that is if
and only if there exists ¢ € C*° (X, C) such that :D?w J)”D(WJ)qﬁ =0, and

816 = 50 (W,-).
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(ii) A wvector field V € T'(T'X) is a Killing field (Lyv(g) = 0) with zeros if and only if there
exists a function ¢ € C* (X,R) such that DD w,n® =0 and

dp = —w (V,—).

This implies more precisely that V = JV 4¢.
In particular, if ReW is a killing field we may choose the function ¢ in (i) above to be real, and
the vector field V —iJV € T (T*°X) ,where V is as in () above, is holomorphic.

Notice that the previous lemma implies that a vector field is a real Killing field with zeros if
and only if it is real holomorphic and a Hamiltonian vector field. We therefore make the following
definition.

Definition 2.2. A vector field V € I'(T'X) as in (i¢) of the preceeding lemma will be called a
Hamiltonian Killing field. We will write ham(J, g,w) for the space of such vector fields.

Remark 2.3. If we write ¢ = ¢1 + i for ¢ € C*°(X,C), then under the isomorphism of real
vector bundles 710X ~ TX,

1
Velp 3 (Vg1 + JVy09).

Therefore if W € h and W = V;’qu for ¢ imaginary, then ReW € ham(J, g,w), and conversely,
so that ham(J, g,w) is precisely the image under the above isomorphism of elements of h with
imaginary holonomy potential. We will denote this set by € C bh.

We may restate the extremal metric condition [2.3[ on the Kéhler metric w as Scal(w) € . If w
is not extremal, we may try to find a Kéhler potential ¢ such that w + i0,;0;¢ is extremal, or in
other words such that

Scal,, (¢) = Scal(w +i0;05¢) € 9.
By the previous lemma, in order for the Kéhler class [w] to admit extremal Kahler metrics, there
must be some non-trivial Hamiltonian Killing field V' € ham(J,g,w) on X, and we must have
V = JVg) (Hy(w)), so that Hy(w) is a Hamiltonian function for V' with respect to w. We may
define a function
Hoy @ Ho— C®(X)
¢ +— Hy(w+id;059),

where Hy (w +i0;0;¢) is a Hamiltonian function for V with respect to w +i09;0¢. The following
is Lemma 20 of Bronnle and computes the function Hy (w +i050¢).

Lemma 2.4. If V € ham(J, g,w) and if ¢ € C°(X) is V-invariant, that is, Ly¢ = 0, then we
have

Hy (w +i0,97¢) = Hy (w) — %Vg(@ (Hv (W) - V()9

If we fix the the vector field V', we may now we may define the extremal operator with respect
toV:

Fy : H,— C?X)
¢ Scal(w—l-igJanb)—Hv(w+i5J8J¢).

In other words
Fy = Scal, + Hw,V‘
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By Lemma if we write H, v C H,, for the subset of V-invariant Kéhler potentials, we may
write

Fy @ Hyv— CP(X)
= 1
¢ +— Scal(w+1i0;050) — Hy (w) + §Vg(w)Hv(w) . Vg(w)gb

= 1
(2.5) = Scal(w+10;0;¢9) — Hy (w) + §£Vg(w)Hv(w) (9)
Clearly then the extremal metric condition can be restated as

(2.6) Fy (¢) =0,
since this says precisely that Scal(w + i0;05¢) is a Hamiltonian function for V with respect to
w +i0;05¢, and therefore lies in §. Since the choice of V' was arbitrary, we may more generally
consider the map
F : bpam(J,g,w) X H, — C(X)
(V, d)) — Scal(w + i5J6J¢) — Hv(w + z’5J8J¢).

2.2. Linearisations. We will now give the linearisations of the scalar curvature and extremal
metric operators. Recall that the Lichnerowicz operator satisfies the following formula:

iaﬂ)] ((25) N Pw N w2
wn '

(2.7) DD (w,)® =A2 (¢) + g (VScal (w) , V) +n(n—1)

We will write dg (Scal),, for the derivative at 0 (the linearisation) of the map Scal,. A formula

for the linearisation of the scalar curvature is given by the following lemma, which is Lemma 2.1
of [F].

Lemma 2.5. Let (X,w) be a Kihler manifold of dimensionn. Let V C L?I+4 be the L?I+4 completion
of an open set H, C C*°(X). The map
Scal, : V — L3
defined by ¢ — Scal(wy) is smooth as a map of Banach spaces when d >n — 2..
do (Scal),, = D, D w.n)d+gw (VScal (w),Ve)
00,507 (¢) N pw A" >

wn

= A2 (¢) — Scal, (0) Ay (¢) +n(n—1)

)

so that in particular if w has constant scalar curvature, then

dyScal (¢) =D, 1D (w,1) 0

and if w is Kdhler-Finstein with Finstein constant X\, then
do (Scal),, = A (6) — My ().
Lemma 2.6. If we fiz V € ham(J, g,w), the linearisation of the map Fy at 0 is given by
(dFv)o : Heyv — CP(X)
§ 1 1
¢ @(w7j)©(w7(])¢_§gw (VSCCLZ (w) ,VQb) + ivg(w)H\/(w) . vg(w)gf)

« 1 1
Do) D,y P 5 £9Seal(w) (0) + 5L, Hy (@) (@)-
This follows automatically from Lemmas [2.5] and [2.4]
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2.3. Calabi flow. Let X be a complex manifold with holomorphic structure J. Fix a Kahler form
w which is compatible with J determining a Kéahler triple (J,w, g,,) on X.
There is a functional
M:H, =R,

called the Mabuchi energy, the norm square of whose gradient is

/X (Scal(w¢) - SCTW) 2 dvol,,.

In other words, it is the anti-derivative of the closed one-form

(dM), (¥) = /X(Scal(w¢) — Scal(wg))dvol,.

Note, that there is normally a minus sign in the above formula, but we have defined the space H,,
using the operator d;0; rather than 070, as is customary, so our H,, is minus the usual space of
Kahler potentials. The negative gradient flow of this functional is the equation

5 o
g = —(Scal(wg,) — Scal(wg,)),

and writing w; = w + i0707¢; we see that this equation is equivalent to equation SO we may

(2.8)

also refer to it as Calabi flow.

In this paper we will have occasion to consider the action of the diffeomorphism group diff(X),
on the set of complex structures Jx on X given by &-.J = d€oJo(d¢)™!. In terms of d operators the
action is given by 0j0&* = 5*05£.J. Since {*ody = dx 0o&* we also have 9y0&* = £*00¢.;. It is clear
that triple (¢p—1-J, ¢*w, d*g,,) is a Kihler triple, and by construction, the map ¢ : (X, J) — (X, ¢-J)
is holomorphic.

If w; is a path of Kahler forms on the moving complex manifold (X, J;), then given a one-
parameter family of diffeomorphisms &, & (w(t)) is a path of Kéhler forms on the fixed complex
manifold (X, J).

Notice that

Ric(& (w(t) = & (Ricw(t)),
and so
Seal (& (w(1))) = & Auqr) (Ricw(t)) = & Scal (w(t))

and we therefore obtain
80, (Seal (¢ (w(1)))) = & (10,05, Seal ((£)))

Secondly a standard fact is that

) _ g (40 g )

where V; is the (time-dependent) flow of the diffeomorphisms &;.
Throughout the paper we will consider the equation:

(2.9) agit) +10;,0;5,Scal (w(t)) + Lyw(t) =0

on the moving complex manifold (X, J;). We will call this equation Calabi flow up to diffeo-

morphisms, because using the above facts one sees that a solution to this equation is a equivalent
to the fact that & (w(t)) solves Calabi flow [1.6/on (X, J).
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2.4. The Calabi operator and its linearisation. Recall the parabolic Sobolev spaces Wf pHLwe ()

and Wy p, ¢ w. () from Section [7] The parabolic analogue of Lemma is the following.

Lemma 2.7. Let X be a compact manifold and (Ji,gi,wi) a family of Kdihler structures on X,
converging smoothly to a Kdihler structure (Jso, goos Woo) 0n X, such that

| Je — Joo||W4,p+1,q,w5(t)(goo) s lleor = w°°||W4,p+1,q,wa<t)(9°°) < %0,
and
||Scal(wy) — SCCLZ(U}OO)||W47p’q,1,ws(t)(goo) < .

Then writing Scal,, (¢r + doo) = Scal(ws + 107,05, (dr + doo)) and Scaly,, (¢poo) = Scal(wso +
10701 Poo), there is a well-defined, differentiable map

0
ot + Scaly, — Scaly,, W4E),p+1,q7ws(s) (goo) X LAZL(p-&-l)(goo) - W4,p,q—1,w€(s) (90)
0
(61,0m) = 4 Sealu, (61 + Gne) — Seal (920),
whenever ¢ < p — (n — 2)/4. Moreover, the derivative of this map at 0 is given by
0 . %
(61:60) > DD (91 + 6c) — D D (60)
1
D) (9t (Vg Scal(w), Vg, (ot + dpoo)) — oo (Voo Scal(wes), Vg doo)) -
Proof. First of all, if ¢; € Wfpﬂ gwe (s) (9doo), then clearly
Joe
at W4,p,q—1,w5(t)(900)
Q71 . q . 2
00 B 8(b (3] 9t
= 3 [ o |5 =3 [ o S
Jj=0 0 Li(p_j)(goo) =170 Li(p+l—i)(goo)
< |2 < oo,
at W4,p+1,q,wg(t)(900)

80 Ot € Wy g—1,.(s)(9o0)-
It remains to show

Scalwt (¢t + ¢OO) - Scalwoo (QSOO) € W4,p,q,wg () (gOO)

) and p are the Ricci curvatures of w; + 10,07, (¢ + ¢oo) and

If Pwt+15jtaJt (¢t+doo WooF10 1 Doy Poo
Woo + 10,0, Poo Tespectively, we may write

— n—1
(pwt+i5Jtan (Pr+doo) proJrig‘]OOaJoc ¢Oo) A (Wt + laJtaJt (¢t + ¢oo)>

TP 418,10 01 b0 ((wt +10,07,(¢1 + <Z>oo))n_1 - (woo + iaJoﬁJoocf)oo)n_l)

= Py 4iBs, 01, (detdo0) (“t + 105,05, (¢1 + ¢°O))n_1 T Pt iy By oo (“’OO + igfwafw%)n_l
= Scaly, (¢1 + 6oo) A (we + 185,05, (61 + 6o0)) = Scalu, ($o0) (oo + 01,0 b0)
= (Sealy, (61 + 0c) = Sealu, (9s0)) ((wr + 05,05, (61 + 60) ) )"

+Scaly, (6o0) ( (w0 +05,05,(01 + 60)) " = (oo + 101 0se o) )
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so that for each 7 we have

8] ((Scalu, (¢r + doo) — Scalu, (¢0)))

('Owt+i5Jt8Jt(¢t+¢oo) T Prosetidy, 0y, ¢oo) A (wt + 407,07, (¢t + ¢oo))

_ '
t ((wt + Z.thaJt (ét + ¢°°)))
B ProoetiB o B o0 ((Wt +10.,05, (b1 + ¢°O)>n_1 B (woo " iajmajm¢w>n_l>
+0; ((wt +10,4,0,, (¢ + ¢°°)>)n
— Scaly, (¢oo) ((Wt + ithaJt (¢ + QSOO))H _ (WOO i igJoo - ¢Oo>n))
t ((wt + 10,05, (¢¢ + ¢°O)))n |

Notice that this calculation makes sense, because by construction for each j in the stated range

3 (1902, (61 + 6=))

is continuous so the products in the above formulae involving this quantity are meaningful. We
therefore have:

[Scaly, (o1 + Poo) — Scaly,, ((1500)”14/4 a1 we(s)(9oc)

- /|ws

Scalwt((ﬁt + ¢oo) — Scaly., (Po0)

Li(p*j)(goo)

< qu_:l /OO o (£) 2 (pwt+i5Jt8Jt(¢t+¢oo) - pwoo+i5jooajoo¢oo) A (wt + ia]ta]t(gbt + ¢Oo))
< . 2 :
= /o (we + 105,05, (61 + 620)) 2
L4(p J)(
0 n- = n—1
q—1 e’} . pWOo+i5JooaJoc¢oo A ((Wt + ZaJtaJt ((bt + ¢oo)) — (woo + ZaJooaJoo ¢OO) )
ey [TluoR|o ! n
= /o (wi + 105,05, (01 + 6s0)
Li(p_ﬁ(:
e | [ Sealan (9 (w14 205,01 + 0x))" — (e + D D060))
0y [T o] { :
j=0+0 (wt +1i07,07,(pr + ¢oo)) L .

ap-j)\9

9

_1 00
2 J _ _
< C1+ CQZ/ |we ()] Hat (pwt+iaJt8Jt(¢t+¢oo) - pwoo+i8Joot9Joo¢oo> 12 (ge0)
j=0v0 4(p—g)\I®

where we have used the assumption

”(Ut - woo”W4,p+1,q,wg(s)(goo) ’ ||¢t”w4,p+1,q,wg(s)(goo) ’ ||Jt o JOO||W4,p+1,q,wg(s)(goo) < 00.

More specifically, since if we write
a]t = a]oo + atl,()’g :gjoo + a?’l
where a;* € QL0(End (C)), a' € QO (End (C)), with a;°, a)"! € Wi pt1,g,0.(s)(goo), then

((wr +i05,02, (60 + 6s0)) " = (w00 + 1010160 ) )

— (=) ( (w4 D001 6))" o (e + 00 Dbe) )
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+ (i 0 07 (61 + 20)) ((wt 05,0561+ 0)) o (et z'aJwaqusoo)"l)

n—1

+ ((gjoo o ai,O + ia%’o A a?’1> (¢t + ¢oo)) ((wt + z’gjtéjt(gbt + (boo)) + -+ (woo + iajwﬁjw¢oo)n_1)
+ (@JOO&JOO@) ((wt + igjta]t(qf)t + qboo))n_l + 4 (woo + iaJooaJoquoo)n_l) .

This says in particular that for each 7,

[ (e o -0.0))")

Li(?*j)(goo)

is uniformly bounded in time. Note also that dividing by the Ké&hler form is the same thing is
taking the inner product, so we may also apply the Sobolev multiplication theorem

: <
Ty -Tallz gy < 1Tl (oo T202 (g0

for two tensors 77 and 75, and - is any algebraic operation defined using tensor product and
contraction. This has also been used in the estimate above. The same calculation applies to

((Wt 4 igjtajt(¢t + (Zﬁoo))nil — (woo + iajwajw¢m)n1> )

and all other quantities involved in the integrals above involving these differences are bounded in
the appropriate norms, these two integrals are finite. It remains to prove finiteness of the final
integral. We may write

wy'

5 (wt + @Jta}t (¢t + ¢oo))
Posi+iB3,05, (br+doe) — Powr T 10,07, log

()" A (105,01, (60 + 0c) )

wh ’

n
= pwt-FithaJthg 1+Z
=1

and similarly

~ n (weo) A (10,05 (600))
Pioo+id o0y boo - Pwoo +107,,07,, log | 1+ Z ( )

i=1 Woo
and so obtain:
Pase+i0 1,05, (dr+o0) — Prvoc+iB 00 0100 bo0
= IOLUt - Iowoo
- w + 10y 07,(bt + doo) . Woo + igJooaJoo (foo) !
+i07..07.. <log (( ‘ ~ ) — log ( — )
wi +105,05,(d¢ + b)) _ we +i05,0,(61 + 60))"
+iad" 00y (log (( : tn ) +0;. 0a’ |log ( t tn )
wy Wy

wi +105,05,(d0 + b))
+ia§’0/\a?’1 (log<( ! 792 (2 )> ))

n
W
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We get an estimate

go [ o

o/

— n—1
<(pwt+i31taJt(¢t+¢oo) N pw°°+i5JooaJoo¢00) A (wt +10.,05, (¢t + (boo)) > L2 (goo)
4(p—j) 7

(S > j +'5t8t + o " oo+'500800 00 !
< C-l-z |w5(t)\2 81? log (wt 10 JTE(ZSt ¢ )) log (w 10 nJ ((z) ))
o B e L2, (g
4(p—3) 7
- j + 5 ta t + ¢o " n
= C+> (1) |07 <log ((Wt i i], 5 (6t + ¢ ))n ) +log ((:();))
j=0+0 (woo +10y.07., (¢oo)) ¢ e
-1 rc0 ‘
< CH+ 3 [ @0 (T (@i woor b1, boo) + T (w0, o)

2
j:0 L4(P*j) (goo)

where we have set:

((wt.kiajta]t (¢t+¢00))n _ 1>i

o =y T

_ i1 \ (Woo 1070 00 (60) )

F(Wt,woo,¢t,¢oo) - ;(_1)2 i )
SHENNC T
I (wi, Woo) = Z(—l)zﬂtfa
=1
and used the Taylor expansion
%) ' 1 i
Inz = Z(—l)’“(xi), |z < 1,
i=1

and T is taken sufficiently large so that this expansion is valid, which can be done since

n

(wt + ith 8Jz (¢t + ¢00)) wgo
(woo + Z'gjooa]m (¢oo)>
as t — oo. Pointwise we may calculate

H‘@g (T (Wi, Woo, Pty o) + 1T (wt,woo))‘

7w/trL

Lip—i(9)

< Ci a] (wt + Z'gjtaJt(qst + Qboo))n - (woo + igz]ooat]oo (¢m))n i
=1 (woo + 10,07, (¢>oo))n
Li(p—j)(gw)
Loy oLty
i=1 “i LY (i (g00)
i j (10) j (01)
< o(Slaren-ily )

2
Ly (p5)(g00) i(p—g) (90

+C <+ 07 (at® nalh)]

+ oo

)
Li@,j) (900)>

Z(P*ﬂ(goo
so finally we obtain

[Scalu, (dr + doo) = Scalus (doo)llw, , .1 o) (g00)
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o 2 j . (1,0) F0,1) (10, 01 ;

< 01+sz/ e () [| (|07 (woo — )| + [0 ™| + [0 a®D| + |0f (af® A aft)| + |0
i=0"T

proving the first claim, namely that the map is well-defined. To prove differentiability, it suffices to
compute all directional derivatives

iw + Scalwt (1/115 + w(¢t + (z)oo)) - Scal"-’oo (1/}00 + w(qboo))|w:0

dw ot
d 0 +w(eo
< (¢ - (¢1)) +Seal,, i, 0,0, (W00 + b)) = Scal, 5. 5y (w(ds0))|wmo,

for all pairs of 2-tuples

and prove their continuity. By a calculation formally the same as those of Section 5 below shows
that when w is sufficiently small, there is an expansion of the form:

Scalwﬁ-ith 0t (U)((ﬁt + ¢oo))
= Scal(wt + ithaJt wt) +w ( ;kjtJrith 8tht©wt+i5JtaJﬂ/’t ((z)t + ¢oo)>

1 _
— W9y (ngt Scal(wt +10.,05,91t), Vg, (¢t + ¢oo)) + O(w?),

and similarly

Scalww+z‘5_,ooa]m¢x (w(doo))

= Scal(wos + 10,0, %o0) +w ( Z;m+i5Jmamem©wm+i5m0Jo¢woo (¢m))
1

— 5000 (Voo Seal(woo + 0,01 Yo0)s Vi d00) + Ow?),

where gy, and gy are the Riemannian metrics associated to w; + i0 7,07,¢ and weo + i0 I 07 Voo
respectively. Therefore, the directional derivative of %—FS caly, —Scaly,, at (P, 1)oo) in the direction

of (1, $oo) s given by

0
0(%%0) ( + Scaly, — Scalwoo) (Y4, %o0)

ot
O 0!, 0 0 Dcsiany i O F ) =D o 0 D 5 (6n)
ot wit+i0 7,8, b ~ wi+107, 05, t o0 Woo 10 o0 OJog Yoo Woo 110 706 OJoe Poo N

1 —
_59% (ngt Scal(wt +1i0.,05,41), vgwt (¢t + ¢OO))

1 _
—i—igwoo (Vg%o Scal(weo + 107,07, Vo0), V%m@)o) .

This assignment is continuous (in fact uniformly continuous) in (¢, 1) by Lemma below,
where we note that although the proof there is give for particular metric on a projective bundle,
the proof only uses the stated properties of our path of metrics and holomorphic structures. This
proves that the map % + Scal,, — Scal,,, is differentiable, and furthermore that the derivative is
given by the continuous map

Lip—i(9)

0
d ( + Scalwt — Scalwoo> . W£p+l,q,wg(s) (gOO)XLi(p—‘rl) (goo) — L (W£p+17q,w5(s) (goo) X Li(p-i—l)(goo)’ L?lp(goo)>

ot
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into the space of linear maps between the range and domain defined by the above formula. In

particular
d(0,0) <§t + Scal,, — Scalwm>
- 8;? + D5, Dy (0t + boo) = Di D (Poo)
_%gt (Vg Scal(wt), Vg, (o1 + doo)) + %goo (Vg Scal(wso ), Vg o)
as required. -

3. YANG MILLS CONNECTIONS AND THE YANG-MILLS FLOW ON RIEMANN SURFACES

3.1. Notation. Throughout the rest of the paper we will let ¥ be a Riemann surface and (E, h)
an hermitian vector bundle. We will use the convention h is linear in the first entry and conjugate
linear in the second. We will write 7 : £ — 3 for the associated projection map. From here on
out we will fix a Kéhler metric g5, on ¥ with associated Kéhler form ws. Later we will require wxy
to be a constant scalar curvature metric, but in this section wy, will be arbitrary. A holomorphic
structure on F will be thought of as an operator dg : Q0 (E) — Q%! (E) such that 02 = 0. We will
denote the space of such operators by Ay (F). If V4 is an integrable, h-unitary connection on E,
then its (0,1) part d4 is a holomorphic structure on E such that the Chern connection (94, h) is
V 4. We will denote the space of such connections by .A,ll’1 (E) (because they have (1,1) curvature).
For any such connection we will denote the corresponding holomorphic bundle (E, 5,4) by £. More
generally, we will always denote smooth vector bundles by ordinary letters, and holomorphic vector
bundles by script letters.

We will denote by G the group of complex gauge transformations of F, that is, the set of
complex linear bundle automorphisms g : F — E. This group acts on Ay, (F) by

(3.1) g-0=godog L.
Note that G€ also acts on the space of Hermitian metrics on E by
(3.2) g h(u,v) = h(g™" (u), g7 (v)).

The group G of h-unitary gauge transformations is the subgroup of G® such that g - h = h. G also
1,1
acts on the space on A, (E) by

(3.3) g-Va=goVaog L

Since Ayl (E) ~ .A,ll’1 (E), this action extends to an action of GE. Note, however that this latter
actions is not by conjugation.
Given two Hermitian metrics, hy and hg, we may define an endomorphism hy 'hy by

(3.4) hi(u,v) = ho(u, hy thy (v)).

On the other hand given an Hermitian metric A and an endomorphism k, we may define a new
metric hk by

(3.5) hk(u,v) = h(k(u),v).
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3.2. Yang mills connections, and split and simple vector bundles. We define the Yang-
Mills functional

YM: ANE)/G =R
by

(3.6) Y M(A) = /Z |Fal? dvol.

The critical points of this functional, called Yang-Mills connections on the bundle E, are
solutions to the equation

(3.7) dyFy =0,

. By the Kahler identities this is equivalent to

(3.8) daA,Fa =0

This last equation easily implies that there is a splitting of Hermitian, holomorphic bundles:

(g)h) = (E76A7h) = (E175A17h1)EB"'@(EQ75Aq7hq)
= (glahl)@”'@(glbhq)a

where the Chern connections V 4, = (94,, h;) satisfy the equations A, Fa, = u (&) Idg,, where

) - e (ZS;UOZWE

is called the slope. Clearly in this case the connection also splits as V4 = Va4, @ -+ @& Vg,

The connections A; are called Hermitian-Yang-Mills(HYM). The existence of an Hermitian-
Yang-Mills connection is equivalent (by the Donaldson-Uhlenbeck-Yau theorem) to the slope poly-
stability of the bundle. A bundle is (poly)stable if (it is a direct sum sum of bundles of the same
slope for which) any proper sub-bundle has smaller slope.

Definition 3.1. A bundle & — X is called simple

(3.9) H°(End(£)) =C - Idg
The following lemma is standard.

Lemma 3.2. A stable vector bundle is in particular simple.

Lemma 3.3. Let £ be a simple holomorphic vector bundle with underlying smooth bundle E. Let
h be a an hermitian metric on E, and write A = (Og, h) for the Chern connection, and AEnd(E)

the induced connection on End(E).
C-Idg = ker A gpnar = ker d ypnamy C HY(End(£)).

Proof. Since A yenar = d’ypnq)d gpnace), clearly ker A gypnap = ker d ypnaz). On the other hand we
have

n. End(E
dAEnd(E) - 855'7:)(E) + 8A ( )7

so kerd yenamy C keréﬁnd(s) = HY(End(£)) = C - Idg, by simplicity. Since clearly C - Idgp C

ker d yenam) also, we obtain the result. O
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Lemma 3.4. Let £ be a holomorphic vector bundle (with underlying smooth bundle E) such that

where each &; is stable, u(&E1) > -+ > p(&) (so that in particular the slopes of the &; are all
different). Let h be a an hermitian metric on E, and write A = (Og,h) for the Chern connection,
and AFP"E) the induced connection on End(E). Then

C! = ker A ypnar = ker d ypoaey C H(End(£)).

In other words, the covariantly constant sections (and so also the elements of the kernel of the
Laplacian) of EndE (which are in particular holomorphic), are exactly the diagonal endomorphisms
with constants down the diagonal. In particular, if € is stable, then ker A yrnae consists of precisely
the endomorphisms C - Idg.

Proof. We must show that a covariantly constant endomorphism is of the form
CIIdEl D---D ClIdE'l-

Let F' € EndE such that d ggnae) F' = 0. This says in particular that F' is holomorphic, which
means that automatically the induced maps F : & — &; are zero if i < j (so that p(&) > u(&;))
and F' = ¢;ldg, if i = j, since &; is stable, and in particular simple. We will write A; for the
induced connection on each bundle E;. It is easy to check that d ena=) I’ = 0 also implies that
d yom(m;,m)) F = 0, where AHom(Ei Ej) ig the connection on Hom(E;, Ej) induced by A; and A;. In
other words, the induced map F': & — &; is covariantly constant. We claim that such a map must
vanish even if ;(&;) < u(&;) . This is because the ker F' C & and Im@Q C & will be a holomorphic
sub-bundles and moreover will be invariant under da, and dg; respectively, since the covariant
constant condition says precisely that for any section o of Eq,we have

da; (F(0)) = F (da; ().

It follows easily (see [KOB]| Proposition 1.4.18) that &; splits holomorphically as & = ker F' & S, for
some holomorphic bundle S, and &; as £ = ImF © Q. If F is not the zero map, then we must have
that ker F' = 0, since otherwise ker ' and S are proper sub-bundles, contradicting the stability of
&;. Similarly, since F' is not zero, we must have that () = 0 and ImF = &; for the same reason. But
these two conditions taken together imply that F' is an isomorphism, which is impossible since &;
and &; have different slopes. Therefore F' : & — &£; must be zero whenever ¢ # j, so we obtain the
desired form for F. O

3.3. The Yang-Mills flow on Riemann surfaces. Recall that the holomorphic bundle £ to-
gether with h gives the Chern connection A. We can produce a one parameter family & of holo-
morphic vector bundles associated to connections A; € .A,ll’l (E) given by the Yang-Mills flow
starting at Ag = A :

0A,
(310) ﬁ == _djltFAta

Ay = A

This equation is the gradient flow of the Yang-Mills functional. By Donaldson, it is known that the
Yang-Mills flow has a global solution on A,lz’l x [0, 00).

Using the Kahler identities, we can rewrite this equation as % = dSt A, F4,, where the operator
dgt : QO(u(E)) — QY (u(E)) is given by d‘ct = /—1(da, — D4,). The tangent space to a G& orbit
in .A,ll’1 (E) at A; is imda @ imd§ C Q' (w(E)) = TAt.A,lz’1 (E), and therefore we see that the flow
stays within a single complex gauge orbit.
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A precise construction of the complex gauge transformations g; which determine the Yang-Mills
flow is as follows. If we assume that A; is a solution to equation and define g; to be the unique
solution to the ordinary differential equation defined by:

0 .
(3.11) % _(lAwFAt O gt — Hws, (5))
go = IdE7
then g (Ag) = As.
Note that
5Hom(8,€t)(gt) = éAt °gt — gt ° 514

= gtoéA—gtoéA:O,

so g : £ — & is a holomorphic map.

The flow deforms a given connection in the direction of the gradient d%F4 of Y M. By
results of Uhlenbeck (see [Ul], [U2]), any sequence of times along the flow converges to a Yang-
Mills connection Ay on F, giving a holomorphic vector bundle £. In general £, is not isomorphic
to &y, since by the previous discussion £, must either be holomorphically split or stable. On the
other hand, to any & — (X,w), one can naturally associate a vector bundle (which topologically is
the bundle F) whose holomorphic structure splits as a direct sum of stable bundles as follows.

Every such £ admits a filtration by sub-bundles

0250C51C”'C5171C5125,

such that the successive quotients

Qi =E&i/Ei
are slope stable. Such a filtration is obtained by combining the usual Harder-Narasiman filtration
of a holomorphic bundle with a Jordan-Holder (or Seshadri) filtration of a semi-stable bundle. We
will refer to this as a Harder-Narasimhan-Seshadri filtration. Although, this filtration is not
quite unique, the point is that the associated graded object

Gr(€)=@;9;

is determined up to isomorphism entirely by (€, [w]). Moreover, by the Donaldson-Uhlenbeck-Yau
theorem, each Q; admits an HYM connection, and their direct sum gives a Yang-Mills connection
Agr(e) on the bundle Gr(€). This is therefore a natural candidate for the limit of the Yang-Mills
flow. In fact the flow always converges to this connection.

Theorem 3.5. (Daskalopoulos (D], Corollary 5.19 Rdde [R|], Prop 7.14) The Yang-Mills flow con-
verges at infinity in the C'*° topology in the space of connections A}L’l (E) to a Yang-Mills connection
Ay giving rise to a holomorphic vector bundle E, whose underlying smooth bundle is E. In fact
500 = GT(E), and Aoo = AGr(S)'

Moreover, the flow converges at a rate of 1/\/t, that is, if a; € QY (uw(E)) is defined by a; =
Ay — Ao, we have

laclles < C/VE
for all s and t sufficiently large.

Here, the statement that the limiting holomorphic structure is given by Gr (£) is due to Daskalo-
poulos. The statement about the rate of convergence is due to Rade. Note that although the results
of these papers give somewhat weaker convergence for the flow, this can be easily promoted to C'*°
convergence, see for example Section 3 of [W].
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Lemma 3.6. If A; satisfies the Yang-Mills flow, then writing Ay — Asw = a; for a path a; €

QY (u(E)). Then we have
10]arllc= < C/VE and |0 (Aws Fa, = Aws Fa)llos < C/VE,
for all j and s, and for t sufficiently large.

Proof. By the flow equations we have that
da —
a—tt = +—1 (81400 + a?’l — 04, — ag’o) (Awg Fa, + Aogdaar + Aogar A ay)

= VvV -1 (51400 (AwEdAooat + szat VAN CLt)>

—1—\/—1@?’1 A (AwgFay, + Nosda ar + Mg ar A ar)
—V -1 (8,400 (AdeAooat - szat A\ at))
—\/—latl’0 A (Aws Fay, + Ausdaar + Apgar A at))

where a; = a;° + al?, for a7 € QYO(u(E)), and a)' € Q% (u(E)). Note that the inner product
on Q'(u(E)) induced by gs; and h is orthogonal with respect to the decomposition Q(u(E)) =
QLYOu(E)) @ QO (w(E)), so

2 2

ot lalt = allg. < o/t

1,0
a;

2 2
<[t
Cs C

aO,l‘
cs 71T
for ¢ sufficiently large. Therefore

19uadl v < C(llaclls + o]

e < Clale. < e/vi

Cs)
Similarly, all derivatives of the expression for Oray will yield terms involving ay, ag ’0, a% 0 and higher
time derivatives of these, so ||07a;||cs can be bounded in the same way.
We also have
AngAt — szFAoo = szdAooat + AwEat N ag,
so using the bound on || a;||cs, we obtain the same bound on || (Awy, Fa, — Aus Fa)|lcs. O

3.4. Hermitian-Yang-Mills flow. In the above framework, the Hermitian bundle (E, h) remains
fixed while the holomorphic structure moves. It will sometimes be useful to hold the complex
structure on F defined by Ay fixed, and instead move the Hermitian metric. In particular, we will
let h evolve by the Hermitian-Yang-Mills flow

Oh
h;la—; = —2 (iAo Fy, — p(&)1dg),
where F}, is the curvature of the Chern connection Ay, = (04, ht). Since we are assuming p(£) = 0
(see the remark above) the equation becomes h; 1% = —i\,F},.

The Yang-Mills and Hermitian-Yang-Mills flow equations are equivalent up to gauge. If A; =
gt - Ap is a solution of the Yang-Mills flow, then h; = hog; g; is a solution of the Hermitian-Yang-
Mills flow. Notice that h; is by definition g, L ho. Conversely, if hy = hok; for a positive definite
self-adjoint (with respect to hg) endomorphism k;, then A; = (kt)% Ay is real gauge equivalent to a
solution of the Yang-Mills flow. To spell out the equivalence precisely, the map:

gt - (57 hokt) — (€t7h0)

is a biholomorphism and an isometry, where k; = g;g:. Therefore, since the YM flow exist for all
time, so does the HYM flow.
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The following calculation gives the relationship between the curvature of the connection A;, and
that of Ap,. The action of g; on a connection V4 = 04, + 0a € A}L’l (E), is

Va, =g:-Va=(9)" 000 (g)+giodacg "
Notice that g; is not metric preserving, so this is different from the action of the group G. Conjug-
ating by g, ! we have
g oVa, 00 =k 0daoki+0a
where k; = g¢;g;. The connection k; 1594 0kt + 0 is precisely the Chern connection (0, hy).
Therefore, composing the above formula with itself we have that

gt_loFAt o gt = Fp,.
3.5. Examples. In this section we give examples where the conditions of the main theorem hold.

Example 3.7. We recall the example sketched in the introduction. Namely, consider a rank two
bundle £ — 3 which is given as a non-split extension

0—>£1—Z>51>£2—>0,

where fi, (£1) > fiws (L2). By construction, this sequence is precisely the Harder-Narasimhan
filtration of &, since the condition on the slope implies that £ destabilises £. As £ and Lo are
line bundles they are stable, and thus Gr(€) = £, & L satisfies the condition stated in Theorem
Suppose L£; and Lg also satisfy the conditions Hom(Ls, £1) = 0. We claim that & must also
be simple. Applying Hom(—, &), we obtain an exact sequence

0 — Hom(Ls,E) N Hom(&,€) U Hom(L4,€).

We claim that the first map is 0. then we must have im(f) C ker(m) = L, since otherwise 7 o f
gives a non-trivial map Lo — Lo, and since Ly is stable this map must be a constant multiple of
Id;,, giving a splitting of the sequence. Then by assumption Hom(Ls2,E) = Hom(La, L1) = 0, and
so we obtain an injection Hom(&,E) — Hom(L1,&). On the other hand, any map f : L1 — €&,
must have image contained in L;, since otherwise w o f : £1 — L9 gives a non-trivial map, which
is impossible by the condition on the slopes. Therefore we have Hom(E,E) ~ Hom(Ly,L1) = C,
since L1 is stable. Note that the extensions of £1 by Lo are classified by H 1(/55 ® L1). Therefore it
suffices to find line bundles satisying the condition H°(£3 ® £1) = 0 and dim H'(£3® £1) > 0. As
in [HA|, we may find line bundles with deg(£;) = 1 and deg(L2) = 0 satisfying the first condition, as
deg(L5® L1) = 0, and there are plenty of non-effective divisors of degree 1. If we assume ¢(X) = 3,
then the Riemann-Roch theorem gives dim H!(£3® £1) = g—1—deg(L1) = 1 so we obtain explicit
examples as soon as g = 3. In fact, the Picard groups of line bundles of degrees 1 and 0 are both
three dimensional, and we have only used the open condition dim H'(£} ® £1) > 0, so there is a
six dimensional family of such extensions.

4. SOME BACKGROUND ON PROJECTIVE BUNDLES

4.1. Projective bundles, connections, and holomorphic structures. We fix the bundle
(E,h) = (¥,wyx) as in the last section. We will study the projectivisation P (F) which is a smooth
manifold equipped with a natural smooth projection map 7 : P (E) — X. There is also a project-
ivisation map £ : E — P (E) that takes a vector v € E to its projective equivalence class [v]. By
construction we have 7 = m o £.

Now fix a connection V4 € .A,lz’l(E) on (E,h) giving a the holomorphic bundle £ as in the
previous section. Then P (€) is a complex manifold and the map 7 : P(£) — ¥ is holomorphic. In
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particular V4 determines an integrable almost complex structure on P (F) denoted by J, which
we will now describe. Recall that the vertical bundle is the fixed smooth subbundle Vg given by
the kernel of the map di : TE — T The choice of connection V 4 is tantamont to a choice of
horizontal complementary subbundle H é C TE (with respect to gx) so that we obtain a splitting

(4.1) TE = Vg @ Hj.

Since each fibre of E is a vector space, for any v € F with 7 (v) = x for the tangent space to the
fibre we have T,FE, = FE, and in fact there is a global isomorphism Vg = ©*FE. The map d7 then
gives a smooth isomorphism H g = 7%(TY) for any connection A. The horizontal-vertical splitting
then gives an isomorphism
TE = 7"(E)® 7" (TY).
We may define an almost complex structure J 4 on the total space of E by pulling back the direct
sum
JE ® Jx

under this isomorphism, where jg is multiplication by 7 on the fibres, and Jy is the (integrable)
almost complex structure on X. The integrability condition on A can be used to show that this
almost complex structure is integrable, and so defines the structure of a complex manifold on F
(and therefore that of a holomorphic vector bundle). By the chain rule we have d7 = dr o d¢,
therefore since £ is a submersion, d¢ restricts to H é to an isomorphism onto its image, which we
denote by H 4, and gives a surjection of Vg onto V' = ker dw. We therefore obtain a smooth splitting

(4.2) TP(E) =V & Hy.

Since v € kerd¢ if and only if jg(v) = iv € kerd¢, the almost complex structure given above
descends to P(E) to give an integrable almost complex structure Jy4.

Then Jy4 gives the complex structure associated to P(£), which could also be obtained from the
holomorphic charts for £. Notice that the d-bar operator on functions, which will appear throughout
the rest of the paper may be defined by

(4.3) 0y, =d—1iJad.
In the sequel we will simply denote these operators by .J, and d; whenever the connection on E is
fixed.

Finally since dr is actually a map holomorphic bundles, the bundle V inherits a holomorphic
structure from TP(E). We write V for the resulting holomorphic bundle, and writing H for the
quotient, we obtain an exact sequence of holomorphic bundles

(4.4) 0 —V—TPE) —H—0

where H is isomorphic as a smooth bundle to H4. In the sequel we will write H for this latter
bundle if a fixed connection is understood.

4.2. Gauge diffeomorphisms and moving holomorphic structures. The gauge transform-
ations g; introduced in the last section induce diffeomorphisms g; : P(E) — P(E) by g(z, [v]) =
(x,[gt(v)]). For the moving holomorphic structure .J;, associated with the connection A;, we have
an associated operator 0, of smooth functions of P(E), and its conjugate dy,, so that for each ¢
we have d = 9, + 9;,. Since §; : P() —P(&) is holomorphic we have that

Do gt =g; o0y,
so that
95, = (g, ") 000"
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Then we can write §f 00y, + §; 00y, = gf od =do i = 0;0§; + ;0 g which implies that
~—1\* ~%
0y, =(gy ) 00507;.

4.3. The hyperplane bundle and its curvature. Given a holomorphic vector bundle £ of rank
r, and its projectivisation P(€), recall the that there is holomorphic line bundle Op(g)(—1) — P(£),
which is the line sub-bundle Op(g)(—1) C 7*E defined fibrewise by the usual tautological line bundle
Opr-1(—1).

Then notice then we have an exact sequence of holomorphic bundles

0= Ope)(=1) = 7€ = Q =0,
and therefore Op(g)(—1) inherits a metric hop( ) (=1) Locally we may write

iFio, () = i00logh.

If h; and hg are two different hermitian metrics on E, then if we define the smooth function f on

P(E) by
i -ve(22)

then the curvatures of the Chern connections of satisfy Z'F(hhop(g)(_l)) = Z'F(h%op(g)(_l)) +i00f.
The dual of this metric gives a metric hOH},< &y (~1) On the hyperplane bundle Op(g)(1), and if f is
defined above then

(4.5) iF(hy Op(e) (1)) = 1F (o0, (1)) — 100
By Chern-Weil theory the cohomology class 2mwc; (O[pv(g)(l)) is represented by ’L'F(hvop( o)

4.4. The moment map, the Fubini-Study form, and the decomposition of the curvature.
We will see that i F{ on P(E) naturally decomposes into two pieces. The splitting yields
a decomposition:

h,Op(ey(1))

A(T*P(E)) = A*(Ve (Ve H)® A*(HY)
= A(VHe (V'@ H)® (Ar(T*X)).

This means that for F € Q?(P(E)) we may write F = Fyy + Fyy + Fyy. In particular

curvature iF{ ) € O (P(E)) has such a decomposition, and we will need to understand this

hOpe)1)
more precisely.

We define a map
Oy, - End(E) — C™ (P(E))

by
(46) on (F) ([v]) = h“d)(f)
Ullp

Note that since End(E) = u(E, h) @ iu(E, h), this also defines maps
Oy T'(u(E,h)) —» C (P(E)), P : T(iu(E, h)) — C*(P(E))

from the hermitan and skew-hermitian matrices. If we combine ®; with the pullback map 7* :
OF (2) — QF (P(E)), we obtain a map

Oy, : QY (W(E, h)) — O (P(E)).
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In practice we will mostly be concerned with the case where F' is the curvature F4 of a connection
A. Since ¥ is a Riemann surface, notice that that Fy = (A, Fa)ws, so

(4.7) By (Fa) = Op(Auy Fa)ws.

The Hermitian metric i on E defines a fundamental form Q(h) = (h — h) (or strictly speaking
the pullback of this formula to E), which we thing of as a vertical (1,1) form on E. If we write
1s : S(F) — FE for the inclusion of the sphere bundle, then we may define a two form wpg(h) on
P(E) which is characterised by the formula

(4.8) £ (wrs(h)) = 15(2(h)),

where we recall that £ : S(E)) — P(F) is the projectivisation map. Since §2(h) is vertical, so is
wrs(h). By construction, wpg(h) restricted to a fibre is the Fubini-Study metric associated to the
restriction of h to the corresponding fibre of E.

The following is Formula 15.15 of [DEM].

Lemma 4.1. With respect to the above splitting the two form iF(h,Op(g)(l)) decomposes as

iF (1 0peyny) = wrs(h) + ®n (—Fa) € T (A2(V")) @ T (A2(H"))

where ®p (—F4) is as above, and wpg(h) is the vertical 2-form that restricts to each fibre to be

the Fubini-Study form. In other words, (iF(thlP’(S)(l)))HH =Py (—Fjy), (iF(h’Oﬂ’(f)(l)))Hv =0, and

4.5. Kahler metrics on P(£), P(&) and P(Ey). For any metric h on E, and any holomorphic
structure O with Chern connection V4 = (9, h), inducing a complex structure J on P(£), and
for any positive integer k, we will define the two-form

(4.9) wi(h,J) = iF(h,OP(E)(l
= ops() + @Ay Fa) + B

Notice that since wpg(h) is positive on the vertical sub-bundle V € TP(€) (and 0 on the horizontal
sub-bundle), if & > inf ®;,(—A,.Fa), this two-form is positive definite, and therefore wy(h,J)
defines a Kéhler metric.

We will write J; for the holomorphic structure on P(&;). For each ¢t we have a hyperplane bundle
Ly = Ope,)(1) = P(&). and again h induces a metric on this line bundle whose curvature gives a

)T kntws

closed two form on P(&;) compatible with the holomorphic structure 5gt. Throughout this section,
we fix an Hermitian metric h on E. Let V — P(E) be the vertical sub-bundle of TP(E) with fibre
Viz) = T1,)P(Ez), where 7([z]) = x. Then there is an exact sequence

OHVt—>T]P)(8t)—>th—>0

where H; is by definition the holomorphic vector bundle given by the quotient, which is smoothly
isomorphic to the complementary subbundle H; C TP(E) to V determined by the connection A;.
Then for each k we also have a one parameter family

wi (h, Jy) = w(h, Jt) + kws,
(4.10) = (Pn(=AwgFa,) + k) ws + kwps(h).

for each ¢ the wy (h, J;) are compatible with the complex structure J;, for all ¢. In other words for
sufficiently large k, wy, (h, J;) is a Kéhler form on the complex manifold P(&;).
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In the same way we define a path of Kéhler metrics on the fixed complex manifold P(E) by
applying this construction to the family of Hermitian metrics given by the HYM flow. Namely
define:

wi (he, J) = w(hy, J) + kws
(4'11) = ((I)ht(_AWEth) + k) wy, + wFS’(ht)'

Lemma 4.2. We have
w(he, J) = g (w(h, Jt)).

Proof. By Lemma below we have
9t (P (AwgFa,) + k)ws) = p, (Awg Fh,) + k)ws.

For the vertical part, notice that

* k[ %k Z * * 7 Z T *
15 0 g1 (152(h)) = 315 ° 9t (h=h)lsp) = §(ht — ht)ls(ey = 15QUhe).
Therefore

15Uhe) = 1g0gf (1582(h)) =150 97 (£ (wrs(h)))
= 150 (Eog) wrs(h) =10 (go&) wrs(h)
= 150& (g (wrs(h)) = (§01s)" (G (wrs(h)),
which implies
wrs(he) = g (wrs(h)).

Combining these two equalities, we obtain the result. ]

Consider the the limiting holomorphic structure J,, corresponding to the holomorphic structure
induced by the limiting connection A, of the Yang-Mills flow on FE, giving the complex mani-
fold P(E, J) = P(Gr(£)). Then we may consider the two form w(h, Jso) = iFy,_(h,_), Where
Vi (he,,) is the Chern connection on the line bundle Lo, = Ope_)(1) = P(Ex), with the metric
hr. induced on Lo by h. This gives a Kéhler metric

(4.12) wi(hy Jxo) = w(h, Jo) + km*ws

on the manifold P(£.). We will write g oo for the associated Riemannian metric on the smooth
manifold P(E).

4.6. Vector fields on P(£), P(&), and P(Ex). We begin by giving a construction of smooth
vertical vector fields on P(F). An endomorphism F': E' — E, defines a vertical vector field Xz by

Xr (v) = F(v),

where v € Ez(,) and where we are using the isomorphism 7, Ez () = Ez(y)-

The vector field X descends to a vertical vector field Xz on P(E) as follows. Recall that the
fibres T[v]P(E,) of the bundle V' C TP(E) may be identified with the space Hom([v], E;/[v]).
Under this identification the differential d¢ is identified with the map taking a vector w € T, E, to
the endomorphism

AU 5 /\proj[t] (w) :== A <w - }}LL((Z}’Z;})) v) .
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We define the value of the vector field X at a point [v] similarly to be the endomorphism

(4.13) Xp ([v]) : Ao — A (Fv - }WU> )
Uil

As a consequence we may also write:

Xp = d¢ (Xr),
which by the formula for the derivative is unambiguous. Notice however, that the formula for Xg
depends on the choice of metric h. When we need to emphasise the metric we will write X ;’; for

this vector field, but otherwise we will omit the h.
The following lemma will be crucial to our application of the inverse function theorem later on.

Lemma 4.3. Let & — X be a simple bundle. Then P(E) has no holomorphic vector fields if
g(X) > 2. If g(X) = 1, then TY is trivial and the only holomorphic vector fields on P(E) are
pullbacks of the constant vector fields on Y. Since the Yang-Mills flow stays inside of a single
complex gauge orbit, this remains true for the bundles & determined by the flow.

Proof. The usual short exact sequence

00—V —TP¢E) — " (TY) — 0,
gives a long exact sequence in cohomology of the form

0— H°(V) » H*(TP(E)) — H? (z* (TX)) — - --
Then either H? (7* (TX)) = H*(TX) =0 (if g > 2), or H (7*(TX)) = H* (TX) =C (if g=1). In
the former case we obtain
H° (TP(E)) =~ H" (V),
and in the latter case we have a splitting
H®(TP(E)) ~ H° (V) & C.

We may identify H°(V) with the traceless endomorphisms, that is sections H%(Endp (£)) = 0 (since
€ is simple), as follows. The globalisation of the the Euler sequence on the fibres to P(£) is given
by

0—C—=71ER0p@e(l) —V—0.
Taking the pushforward of this sequence and using the push-pull formula, and the fact that
T« Op(gy (1) =~ Sle* = £*, we obtain an exact sequence on X :

0 —C—-ERE =End(E) — mV — 0.
The long exact sequence in cohomology then gives
0 — C — H°End(E)) — H(m, V) = H(V) — 0,

where we have also used the definition of the pushforward. The map H°(End(€)) — H°(V) may be
thought of as the map F + (Xz)1?, whose kernel may be identified with the constant multiples of
the identity on £. We therefore obtain an isomorphism

H(Endy(€)) = H(Endy(€))/C =~ HO(V).

Then we have either:
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according to the genus. O

Corollary 4.4. If £ is simple, for any Kdhler metric w on P(E) (and in particular for wy(h,J))

we have
ker®7®, ~ C.
Proof. This follows directly form Equation and Lemma O

Lemma 4.5. If A € A,ll’l(E) and J is the holomorphic structure on P(E) corresponding to 0,
with corresponding horizontal and vertical bundles H and V, then for F € I' (End(E)) we have

(d®y, (F))gy = Pp (daF).
If 1 e T(W(E)), Fr € T'(iu(FE)) we have,
(d®h (F1))y = wrs(h) (Xry, =), (d®h (F2))y, = —iwps(h) (J Xy, —) .
As a consequence, if F = Fy + Fy is covariantly constant with respect to A, then
d®p, (F) = wps(h) (XF, =) — iwps(h) (JXp,, =) -
In particular if A is Yang-Mills,
A, (A Fa) = wis(h) (X, ry ) -

Proof. By definition, for any point = € ¥, and any v with 7(v) = =z, H, C T,E , is defined by
H, = do,(T,%) for some section o of E defined locally near = for which o(z) = v and (Vo), = 0.
Then for such a choice of x,v, and o, and a vector field X5, € I' (T'Y), and defining do(Xx) = X =
X + Xy we may write

A(®p(F)oo)y (Xz) = (dPs(

v

e} dO’x Xz)a;)
Jo +

)

) (X <VXa>v)
) (X + (V¥0).)
d(@n(F))u) (Xn)),

where we have used the hat notation to again to denote the pullback of the section VX and the
basic fact that this section (thought of as a vertical vector field) is precisely the vertical component
of do; as well as the defining condition for ¢ at x. On the other hand since A is an hermitian

<

(F)
d‘IDh F)
d@h F

v

(
(
(
(@

connection
d(@p(F)00)s(Xa) = (idh(F(0),0)), (Xx),)

= (ih(da(F(0)(Xy)).0) = ih(F(0), Vo))

= (ih(da(F)(0)(Xs) = F 0 V®0,0) = ih(F(0), V1¥0))
= ih(da(F)(0),0)s (X5), = Pa(daF (X5),))(o(x)
= Bp(daF)) (o)) (Xa)o) -
Since v was arbitrary we obtain

d(®(F))g = ®p(daF)).

On the other hand, by construction @, (F) = &, (F) o £ so

Op(daF)) = Ou(daF))o&=Ed(®n(F))n
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— A B(F)) = d(®(F) g

and we obtain the first result. The other results amount to the statement that the restriction of
®;,(F') to the fibres is a moment map. O

Corollary 4.6. If A € A}L’l(E) and J is the holomorphic structure on P(E) corresponding to 04,
for Fy e wW(E), Fy € T(iuw(E)) we have

P=J (vgk(h,.l) @y (7F)>V’ iXp, = (vgk(h,J)(I)h (F))

v
If F = F| + F5 is covariantly constant with respect to A, then
—iJXp, = ngk(h J) n(=F).
In particular, if A is Yang—lels, then
XALUEFA = ngk(h J) h(—AwgFa).

Proof. By the previous lemma, for [y € T'(u(E)), F € I'(iu(E)) we have

(d®h (Fl))v = wFS(h) (XF17_) :gFS(h) (JXF17_)7

(dPp (F2))y, = —iwps(h) (JXF,—) = grs(h) (Xp,—),

so we must have
IXp = (Vo O (Fl))v, Xp = (Vouu O (Fl))v

which gives the first result. If F' is covariantly constant with respect to A, then again by the previous
lemma we obtain,

d®y, (Fy) = WFS( ) (Xp, =)+ Pp (daFy) = grs(h) (JXp,—) + @, (daF)
7 (JXp, =)+ @p(daly),
n ((JXF,—))
d®y (Fy) = igen.g) (XEy, —)) + @ (dalh)
= g (Xm,—)),

so that
d®p (F) = grn,) (JXF +iX R, —))
JXFl + i)(F2 = vgk(h,J)(I)h (F)

giving the second result. If A is Yang-Mills then by equation Ay Fa is covariantly constant
with respect to A, so we obtain the final result. O

Lemma 4.7. Let £ be a holomorphic vector bundle with underlying smooth bundle E, and F €
[(EndE). If F € H*(End(€)) is a holomorphic endomorphism, the vector field Xr is real holo-
morphic. That is, (Xp)10 € THO(P(E)) is a holomorphic vector field.

Proof. Recall that X is the image under d§ : TE — TP(FE) of the vertical vector field Xp on
E defined by X r(v) = Fo. Since the vertical sub-bundle Vi < T'E may be identified canonically
with the pullback bundle 7*FE, where 7 : £ — X, X r: E — 7 E is the composition of the map
F : E — E with the canonical section ¢ : E — 7*FE given by o(v) = v. Clearly, considered as a map
& = #*E , o is holomorphic, so if F' : £ — & is holomorphic, the map Xz : € — 7*€ is holomorphic.
Then since & : £ —P(€) is holomorphic, the map TE —T1Y(P(€)) given by composing d¢ with the
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isomorphism of smooth bundles TP(£) ~ T+°(P(£)), is a holomorphic map, and since the image of
X under this map is precisely (Xz)", we obtain the result. O

Lemma 4.8. Suppose g(X) > 2. Assume that the Harder-Narasimhan filtration of the bundle £ is
equal to its Harder-Narasimhan-Seshadri filtration, so that in particular the slopes of the summands
of Gr(E) are all different. Then there are isomorphisms and equalities

HYTP(Ex)) = b (P(Ex)) = {(Xp)" | F e H(Endy(£))} ~ HO(Endo()),
E(P(Ex)) B It (P(Ex)) = {(Xp)MY | F € D(Endo(E)), da, F =0}
= {(Xp)Y0 | F e T(Endy(E)), F = ®icildg,, ¢; € C} ~C™,

EPEx) = (V)0 o iy ®aF) | F € TW(E)), da F =0},

= {(Xp)"Y |F e T(W(E)), da F =0}
= {(Xp)M | F eT(W(E)), F = ®ic;ldg,, ¢ € iR} ~R™.
where m s the length of the Harder-Narasimhan filtration of £. The space of Hamiltonian Killing
fields on P(Ex) is given by:
bam(Joo, gk,1(Joo, h), Wit (Joo, )
{Joo Vg1 (1) B (F) | F € D(u(E)), da F =0}
= {JoVg1(Joosh) <I>h(F) | Fel'(uw(E)), F=&cldg, ¢ €iR}
= {Xp| FeT(uw(F)), F=®cildg} ~R™.
Therefore in particular we have

ke D, 1 (o) D a(oe oo (xm) = R

Proof. Exactly as in the proof of Lemma [4.3] we have an exact sequence

0 — H (Vo) — H (TP(Ex)) — H® (7" (TX2)) —

and since H° (7* (TX)) = 0, and pushing forward the corresponding Euler sequence on P(£,,) we
obtain isomorphisms:

H (Endy(Ex)) ~ H® (Vao) ~ HY (TP(E)),

with the map H° (End(Ex)) — H® (Vs) being given by F +— (Xr)"?, whose kernel may be
identified with the constant multiples of the identity on &£, where by the previous lemma, this map
is well-defined, and gives the above isomorphism. Then we have

HO(TP(Ex)) = {(Xp)""| F € HO(End(€))} = b,

where the second equality comes from the fact that all vector fields of this form have zeros.

By the previous paragraph, we know that we may write any vector field in H? (TP(Ey)) as
(Xp)0 for F € H? (End(Ex)). We will write F' = Fy + F, for F; € T(u(E)) and F, € T'(iu(E)).
Note that by Corollary [4.0]

Xr = Jx (vgk,l(Joo,h)@h(_Fl))voo

Xr = Jso (ngyl(Joo,h)‘I)h(—Fl))v

Xy = (1Y, (7o ) @n(F))

— (Vs (),

oo

Voo

[e')

so that

1 .
(Xp)tY = 3 <Joo (ngyl(Joo,h)(I)h(_Fl))Voo —iJso (Joo (ng,l(Joo,h)‘Ph(—F1))Voo>>
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1 3 . .
+§ ((_1ng,1(Joo,h)(I)h(F2))voo —1Jx (_Zng’l(Jm’h)Q)h(FQ))Vw)
1 1 ) ~ . .
T2 (vgk’l(J“7h)Zq)h(_ZF1))vw — e (ng,l(Joo,h)“I’h(—lFl))voo
1 _ - »
2 ((vg’“l(‘]"“’h)(I)h(_ZFQ))voo ~ e (ng,l(Joo,h)q’h(—ze))voo

(1,0)
Vet (@n(~i(F + F)) )

|
7N
/~ /~

(1,0)
= ( Vg (oo ) (P (=i F)) ) )
Voo
By the second part of Lemma [£.5| we obtain that if d4_ F = 0,
(d®p(—iF))3,, = Pp (da (—iF))) = 0.

Therefore
(V gt (Joo,) (PR (=1 F))) 31, = 0,

and we obtain

(Xe)" = Vg (@n(=iF)
= Vo) (BT + V50, 1y (Pn(=iF2)
1,0 ; 1,0
- vgk,l(‘]oovh) ((Ph(_ZFl) + Joovgk:,l(JOO7h) (¢h(F2))7

where we note that
Pp(—iF1), Pr(F2)
are imaginary valued. We therefore obtain
{(Xp) " |F € D(Endy(E)),da F = 0} C £(P(Ex)) ® Joct (P(Exc)) -
Furthermore, if F5 = 0, then
(Xp)H0 = VLo (Jomh)(@h(_iFl))

)
so if da F = 0, then (X)!? has imaginary holomorphy potential if and only if F' € T'(u(E)), and
we obtain
(V! o ®liF) | F € T(W(E)), da F =0} C £(P(Ex))
On the other hand, suppose that
Xp = ivHo (Jso,h) (@)

9k,1
for some real valued function ¢. Then since X is vertical, in particular we have

10 B
(Vg (o) (D) #Heo = 0,

and by the above calculation
1,0 . . .ol0
(Vo ty (Bn(—iF))) = Vg (9

Voo
= (ng,l(Jw,h)(q’h(—iF))) =iV, (Jooh) (9)

Voo

which means that
d(Pp(—iF)) —i¢p) = Pp(—ida F)
— EJOO ((I)h(—iF)) — Z(Z5) = (I)h(—iaAooF) = 0,
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since F' is holomorphic. Therefore ®,(—iF")) and i¢ differ by a constant and in particular
0 =d (i), = Pr(—ida F),
so we obtain da_F' = 0, and therefore we get the other inclusion

E(P(Ex)) C AV, (s my@r(iF) | F € T(u(E)), da F = 0}.

The inclusion
E(P(Ex)) @ Joct (P(Ex0)) C {(Xp) M0 |F € D(Endy(E)),da. F = 0}
follows in the same way. The equalities of these sets with
{(Xp)P | F e HEndy(€)), F = @iciddg,, ¢; € C},
and {(Xp) MY | F e D(u(E)), F=acldg,, ¢ € iR}

respectively, follow by Lemma [3.4
By Remark [2:3] using the description of £ above, there is a bijection

t — bam(Joo, k1(Joos h), Wi 1(Joo, R)))

, 1
vl (@a(iF)) = 5oV (Juesy@r ().

gk,l(JCXMh)

For F' € I'(u(£)) and da_, (F) = 0, so we obtain the first description of ham(Juo, gi,1(Joos 1), Wi 1 (Joo, h)))-
The second description of this space is obtained by applying Lemma [3.4 By the last part of Co-

rollary we obtain

1
Xr=Jx (ngyl(Joo,h)(QCI)h(F))> ;

so we obtain the third description as well. O
4.7. Evolution equations.

Lemma 4.9. If h; satisfies Hermitian- Yang-Mills flow then

0 . .5
(4.14) 57 E (i, 0n(ey (1)) = 20008, (A F,)-
More generally, for any path of metrics hy, we have that

0 . = A
(4.15) alF(ht,Op(g)a)) = 10700, (ih; ' Othy).

Proof. We have
hi(2(Ay Fyy, — ip(E)Idg)v,v) he(ihy  0shsv,v)

20, (A Fp, — ip(E)Idg))([v]) =i .
ol [l
ho(v, by Giv) ok
= 0 = W v .
[v]l, o >0/ 1Vl

If we define f; € C*° (P(E)) by

hy (U7 U) >
=1
ft ([U]) 0g ( h(U,’U) ’
then the the relationship between the metrics h* and h* on the line bundle £ = Ope)(1) — P(€)

is given by hf = e~7th*, and so we have

(s, 0pe (1)) = (1,05, (1)) — 10501 .
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and clearly we also have

5D T, o) o,
so that
. ~ . o - o
2i0705Pph, (AwFh,) = 2i0505Ph, (AwFh, — ip(E)IdE) = —alf)Jant = 57 (h.0 ey (1))-
The more general statement follows from the exact same proof, as we have only used the Hermitan-
Yang-Mills equations in the first line. O

Lemma 4.10. Let g; be the complex gauge transformations defined by equation and gy the
induced diffeomorphisms. The (time-dependent) infinitesimal generator of the one parameter family
of diffeomorphisms g; is given by the vector field —XiszpAt. That is, we have an equation

gt ~
(4.16) Bp = KituyFa, (92)-

In particular,

Opa(t)  _, (Owpa(t
g;( ) =0 < kail:( ) +£7X7,‘Aw2FAt (Whl(t))) ’

so that

G (%k,l(t)

COO
9t ot ) — ﬁ_XiA“’EFAoo (ch,l,oo) - ‘C*ng((]oo,h)(‘Ph(/\ngAoo)) (Wk,1,00)
= 20,07 (Pn(ApeFa))-

Proof. Let F; € T(iu(E)) be a one parameter family. Recall the vector fields X, € T(T'E) defined
by v — Fiv. Then with respect to the Riemannian metric on TE ~ 7*E induced by h, these are
the gradients of the functions

$,(F,) : E—R
v =  h(Fw,v),

and the negative (time dependent) gradient flow of this path of functions is

8’[),5
N AP
ot Lot

The projection of the gradient of X, onto the unit sphere bundle S (E) C E, is given by the vector

field
h(Faw,w)

Id :

h(w, w) E) v

Because this vector field is homogenous, taking projections of both sides of the above flow to the

sphere bundle, we see that the projection w; : R — S (E) of the path v; to S (E) solves the equation
% _ < _ h(Ftwt,wt)
ot !

In the same way, projecting to the projectivisation, the image [w;] : R — P(FE) satisfies the equation

Olwy]
ot = X, (fw).
Now let g; be the complex gauge transformations defining the Yang-Mills flow. By equation [3.11]
we have that for any v € F,

’U)'—><Ft—

Id .
h(wtawt) E) e

dgt(v)
ot

= —iluy Fa, (9:(v)).
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In other words v; = g;(v) satisfies the (time-dependent) gradient flow equation above, and therefore

Ao _ iy, ()

we have

for any v, and by the definition of g; this says that

9 (1) = ~Xinoy oy, @ (01)

for every [v] € P(E), which is precisely the stated result.

The second statement follows immediately from this, and formula for the time derivative of
the pullback of family of differential forms by a family of diffemorphisms, the convergence of the
Yang-Mills flow at infinity, and also the formula

Evg¢w = 2i8j5j¢,
which is valid for any Kéahler triple (g,w, J) and any smooth function ¢. O

4.8. Decomposition of C*°(P(E)). Since the scalar curvature of the metrics we will construct is
a smooth function on P(E), we will need a more precise description of the space of such functions.
First we will consider the case when we fix the metric & and holomorphic structure 4 on F giving
the holomorphic bundle &, (inducing a holomorphic structure J on P(E)).

Note that we have a natural inclusion 7*C*°(¥) — C*°(P(E)). We may define a map 75, :
C*®(P(E)) — 7*C*(X) by the pullback to P(E) of the integration over the fibres, namely

T (f)([v]) = 7 (/P(E | f'wTFE}) 7
where 7([v]) = z.

Clearly for f € 7*C>°(X), we have f = Wﬂg*(f). If we denote by C3°(P(E)) — C*(P(E))
the subspace of smooth functions whose restriction to each fibre has mean value zero, and define
p: C®(P(E)) — C(P(E)), by p(f) = f — mﬂ'g*(f) € Co(P(E)), there is an exact sequence

0 — 7*C®(2) » C®(P(E)) & C5°(P(E)) — 0,
and the inclusion C§°(P(E)) — C*(P(FE)) gives a splitting:
Co(P(E)) = " C=(X) & Cg° (P(E)),

corresponding to the fact that each function f can be written as

F= o)+ 8,

There is a further decomposition of C§°(P(E)) as follows. Denote by @, (I'(su(E, h)) , the set of
C* functions in the image of the traceless endomorphisms of E under ®,. For each fibre P(E,)
one can calculate

[y B0 i =0
so that there is an inclusion ®;, (I'(su(E, h)) < C§°(P(E)). Then we have a splitting
C*(P(E)) = 7 C=(X) @ @p (D(su(E, b)) & CF° (P(E)) 1,

where Cf°(P(£)) 1 is the set of functions which are fibrewise L? orthogonal to 7*C*(X)@®®y, (I'(u(E, h)).
Note that @, (I'(u(E, h)) and C;°(P(€)) . depend on the Hermitian metric h.
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The functions 7*C°°(X) are constant on the fibres. The following lemma says in particular that
the space ®p(su(F)) is also finite dimensional when restricted to the fibres. For the proof see for
example the thesis of Pook.

Lemma 4.11. For any z € X, the space
Pp(su(Ez)) = Cn(su(E))[p(r.) = {Pn(F)lps.) |F € su(E)}
is exactly the lowest eigenspace (corresponding to the eigenvalue r) of the Laplacian with respect to

the Fubini-Study metric on P(E,).

The decomposition of the C*°(P(FE)) behaves well with respect to the gauge transformations
g: and the induced diffeomorphisms g;. Namely, we have the following lemma which is a simple
consequence of the definitions.

Lemma 4.12. For any g € G (E), with § € G (PE) its induced diffeomorphism, and any endo-
morphism F € su(E, h), we have
9" (Pn (F)) = @g.n (9" (F))
In particular, if g € GC (E) is the path of gauge transformations associated to equatz’on then:
(4'17) 5? ((I)h (AWEFAt)) = Dy, (szth> :
As a result, for each t we have a splitting
C*(P(E)) = 7C%(Z) @ g; (2 (D(su(E, h))) @ g/ (Cp°(P(E)) L)
= ON(S) @ By, (su(E, b)) & O (P(E)) 1.
We may therefore write any ¥ € C*°(P(E)) as
U = Us+g (Ye,) +7; (V1)

A

= \1’2+\ifq>h—|—\iu_:\lf.

Finally, we will need the following lemma.

Lemma 4.13. The projection maps 7y, : C*°(P(E)) — 7*C>®(X), mg,« : C*(P(E)) — ®p(su(F)),
Tis : CC(P(E)) — C®(P(E)), onto the three components in this decomposition are continuous
with respect to the frechét topologies. In particular, if

U(t) =Ws(t) + Ve, (t) + ¥ (1)

and ¥ (t) = Voo in C°(P(E)), then Us(t) = Uy o, Vo, (t) = Vs, 00, and ¥ (t) = V| o, where
Vs 00, Yo, 00, and V| o are the images under the respective projections of Vo,. Moreover, the rate
of convergence is preserved under the projections.

Proof. We may define an infinite rank vector bundle W — ¥, with fibres W, := C*°(P(E,)), so

that the space smooth sections C*° (W) may be identified with C°>°(P(E)) by the isomorphism 7 :

C*®(W) — C*(P(FE)) defined by 7(c)([v]) = o(z)([v]), where m([v]) = z. There is a decomposition
W=CoWs, ®W,

corresponding to the fibrewise decomposition W, = C & @y (su(E,)) & C°(P(E.)),. The map 7

identifies C*°(C) = C*°(X),C>*(Wg, ), and C*(W ) with 7*C*>(X), ®y(su(E)), and C*(P(E)) |

respectively. If we write 7y, g, , ™ for the three projection maps from W onto C, Wy, , and W,

then the projections sy, 7@, «, and 7 | , are the compositions with 7 of the maps C*°(W) — C*°(%),
C*(W) = C*(Ws, ), and C*°(W) — C*(W ) induced by the projections. Since these latter maps
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are the induced map of smooth bundle morphisms, they are continuous with respect to the frechét
topologies. The other statements follow automatically. (|

4.9. Continuity of ®;. In this subsection we show that the map &, : su(E,h) — C®(P(E))
behaves well with respect to convergence in the C°° topologies. We will use the metric g 1 o0
(which depends on k) on C*°(P(E)) to compute covariant derivatives, so we will need to estimate
C* norms with respect to this metric uniformly in terms of the norm of a fixed metric independent
of k. For this we will give a slight modification of a result in [F].

By analogy with the discussion in Section 5.1 of [F], in the following we will consider a ball B C X,
centred at g, such that there is a biholomorphism P(Ex)|p = B x P'~!, where £ = (E,04..)
corresponding to the limit A, of the Yang-Mills flow. This biholomorphism will be arranged so
that the horizontal distribution on the central fibre P;gl is equal to the restriction of the restriction
of the second factor in the decomposition

T(P(Ex)|B) 2 TP ' @ TB.

We will compare the restriction of the Kéhler form wy o to P(€x)|p with the product w), =
wrs @ kwp, compatible with the split complex structure Jpr—1 & Jp, where wrg is the usual Fubini-
Study form on the fibre, and wp is the flat Kahler form on B agreeing with wy, at the origin.

Lemma 4.14. Let V. — ¥ be a smooth vector bundle and consider the pullback 7 (V) — P(E),
and B € C*((T*P(E))®* @ 7*(V)) with = 7*(a) for a € C*(T*L)®" ® V). Then we have an
estimate of the form

1Bllc: (g ) < CE llallongsy
If B is not a pullback then we still have

1Bl gy 1.00) = O1)-

Proof. First we remark that the result is true for the product metric g;€ = grs ®kgp on B x P L,
This is because for the Levi-Civita connection Vg/ for this metric (coupled to the pullback of any
k

connection on V) is the direct sum Vg, @ kV,, of the two Levi-Civita connections on each factor

(coupled to the pullback connection on V'), with the second factor weighted by k. Since 3 is pulled

back from the base, it is constant on the fibres we have that V , (B) = kn*(Vy4p), and similarly
k

V;/ (B) = k*m*(V4ya), and therefore since the expression for the pointwise norm | — |g/ of an s +1
k k

tensor involves the inverse of the metric 2(s + i) times, we obtain

s1.—(s+1 1/2 —1
1Blloeer) < (BF) T Bllos(gmy = k77 llloney) -

Moreover, if the ball B is taken to be small enough, the norms [|—|lgs(,,) and [[—[lcs(4) are
uniformly equivalent, and therefore we also have

1Bllegy) < K72 ladlgngs) -

By the slightly more sophisticated argument of [IF] Theorem 5.2, we in fact have that ||—||.. (@)
k

and || —|[cs(g, , ) are uniformly equivalent as well, so on a very small ball B we obtain

||18||Cs(gk71’oo) S k_i/Z ||a||05(g§;) :

Covering P(E) by charts of this kind, we obtain the global estimate of this form.
The proof for the case when 3 is not a pullback is exactly the same except that there are terms

involving the V.. as well, but these do not depend on k. ]
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Lemma 4.15. Let F; € su(E, h) be a path of endomorphisms, and Fuo a fized endomorphism. Then
Fy — F in the C™ topology with respect to the metric gs, at a rate of f(t), that is, for each s >0
and fort >>0:

1E: = Fooll s (su(e,h).g5) < CF (1),
if and only if ®p(F}) converges to @y (Fu) in the C°° with respect to the metric gy 1.0 at the same
rate, that is; for each s > 0 and fort >>0:

[@4(E%) — n(Foo)llon oy g0 oy < CHO).

In particular for the path of endomorphisms given by A,y Fa, where A; is given by the Yang-Mills
flow, we have for each s > 0 and fort >> 0 :

Hq)h(AWEFAt> - q)h(AwEFAOO)HCS(IP’(E),ghLOO) < C/\/g

Proof. We consider the pullback bundle 7*(su(E,h)) — P(F) via the map = : P(E) — X. By
construction, a point in 7*(su(E,h)) is a pair ([v], F) € P(E) x 7*(su(E, h)), and therefore &,
induces a bundle map

[1]

7 (su(E,h)) — C
defined by Z([v], F') = ®,(F)([v]). This is obviously linear on the fibres, and smooth by the definition
of ®,(F)([v]), and in turn induces a linear map on the spaces of C* sections

Ee: C®(n*(su(E, h))) — C°(C) = C(P(E))

given by Z.(0)([v]) = E(o(v)). Given any F € su(E,h) we may define a smooth section o of
7 (su(E, h)) by op([v]) := ([v], F') (which is exactly the section 7*(F')), and therefore we have

Ex(or)([v]) = E([v], ) = @n(F)([v])
for all [v] € P(E), and so ®,(F) = Z.(or). Note that =, is bounded (and therefore continuous)
with respect to the Banach space topologies on C*(7*(su(E, h))) and C*(P(FE)) for each s and is
therefore continuous with respect to the Fréchet topologies on C*°(7*(su(E, h))) and C*°(P(E))
induced by the semi-norms defined by

[Viso

and HV

Co(ﬂ'*(ﬁu(E,h)),ng oo k1 Oofy’ CO(]P(E):gk,l,oo)

as s ranges over all positive integers. This follows since for each s we have

HE(U)HCS(IP’(E),%,LOO) CH“HCS”UHCS *(su(E,h),gk,1,00) CHUHCS *(su(E,h),gk,1,00) °

Therefore if Fy — F, smoothly then op, — op,_ smoothly and so ®p,(F;) — ®,(F) smoothly as
well.
Since =, is linear we have for each s

190(F) = OuFoo)loxemrgs ) = IE(0R) = Eelor)llcmpiyge
= [Eilor — oro)llos®(m).gi1.00)

Cllor,—Fooll oo (e (su(E, ).k 1,00)

< ClF = Fusllosu(mpygs) < CF(1),

for t sufficiently large.
To prove the converse, we note that =, is invertible since

hs(FU7 v)

hs(v,v) =0

Ei(or)([v]) = @n(F)([v]) = V-1
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for all [v] if and only if F' = 0 if and only if op, so Z, is injective; and given f € C*°(P(E)),

= hs(f([v])v, )
:* = —1— = y
(Forap)([e]) = V=I5B — (1)
so Z«(fora,) = f, and E, is surjective. Therefore by the bounded inverse theorem the inverse maps
=11 0°(C) = CY(B(E)) — C*(n° (su(E, )))

are bounded (and therefore continuous) for each s, and so the inverse is continous with respect
to the Fréchet topologies on C*°(7*(su(E,h))) and C*°(P(E)). Therefore if ®;(F;) — ®p(Foo)
smoothly, then F; — F, smoothly. By the previous argument an estimate

[81(F2) — B (Foo) ez e, oy < CHD)
for all s implies
1F: = Foollos (su(e,h).g5) < CF(E)

for all s.
The last statement follows from Theorem [3.5 O

4.10. Convergence of various quantities and operators.

Lemma 4.16. If J; is the holomorphic structure on P(E;), where & = (E,04,) with Ay satisfying
the Yang-Mills flow, we have for every j and m, fort >>0:

ot -

0] (wra(t) — wkvLOO)HC’"(g

< C/Vt,

‘]°°)Hcm<gk,m> ’

,1o0

where the constant C' is independent of k, and in particular, for all p,q, and €

HJt o JOOHWAL,val,q,we(t)(goo) ’ Hwk’l(t) Wk (900) < 0.

7170°HW4,p+1,q,we(i)

Consequently, for any smooth function ¢, we have we also have

Hf)i (5@ - a’oo) d" C™(gk,1,00)

and H(é]t —5Jw> QSH < oo.

Wi p+1,q,we (s) (9, 1,00)

< 1/Vt

Proof. We have by definition

Wi, 1(t) — Wi 1,00

= wrps(h)+ (P (AngAt) + kwy — (P, (AngAoo) + k)wy —wrs(h)

= (P (AuyFa,) — P (Awg Fa)) ws.
From Lemma [£.15] we obtain the second stated inequality.

For the first inequality we recall that by definition J; and J,, are defined using the smooth
splittings
TP(E) =V & H; =V & Hw,

where H; and H., are complementary subbundles to V' determined by A; and A, respectively.
Namely, for any smooth vector field X € I' (TP(E)), we may write

X:XV+XHt :XV+XH0<,
according to these splittings, and then
J(X) = jv(Xv)+ Jo(Xm,)
= jv(Xv)+J=(Xn,),
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where jy is the complex structure on V induced from the complex structure on Vyp = 7*(FE)
determined by multiplication by 4 on the fibres. Then to compare J; and J it suffices to compare
Xpg, and Xg__ . These vector fields correspond to vector fields Xpg, € I’ (Hét)and Xy el (Hé‘”)

under the smooth isomorphisms H ét ~ H; and H éc"’ ~ H,,, which are horizontal lifts of some
vector field Xy, € T' (T'X). Now note that for any smooth section o € I'(E), we may define a vertical
vector field o € T' (Vg), by o(v) = o(x), where v € E,. Then by construction we have that

— —

Va(0)(Xs) = [Xn,,6), Va (o) (Xn) = [Xn.,5),
so that -
Va, —Va.(0)(Xz) = [Xu, — Xu..,0).
In other words we can think of both (V4, — Va. ) Xy and Xp, — Xp__ as being maps D(E) —
I’ (Vg), and these maps are equal. From this we obtain an inequality:

Hag (S = Joo) XHcm(gk,l,oo) s C HJE (8§ (X, — XHOO))HCm(gZ) =C Hag (XHf - XHOO) HCm(gg)
< ot - aony,y).

and the result now follows from Lemma [3.6] The final statement of the lemma follows directly from

this and Equation O

We define the operators Ay, and Ay, by
AHt (¢) = isz (ingaJt¢) HoH,

AVt (d)) = iAwFS(h,Jt) (ithathi))

and Ay and Ay in the same way.

)

Vi Ve

Lemma 4.17. For every j and m we have and every ¢ € C™(gp100), fort >>0:

07 (B = Bs) D iy, S Clllem gy VE
o7 (Avi =2 @) iy S Clbllom g,y VE

0 o = 80 ) )] iy S Clllomg iy IV

where the constant C is independent of k.

Proof. We remark first of all that for any Ké&hler metric g with Kéahler form w, the volume form w”
is parallel, and therefore for any covariant derivative Vf], and any function f we have

Vi (f ") = Vi () @,

so that
15 lomgy = (Ifllcagy + -+ |58 gy ) 1" oot
= |fllemg)
since [[w"[|co(4) = 1. In particular, for a top degree form § we have
B g
Blemin = || o7 . =] 5
Dl T e llwrlion)
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Then for any j and m we have:
J
Hat ((Awkyl(t) - Awhl,m) <¢))H0m(gk 1oo)

_ clles wr (8 NiD 1,0, (0) (wk,l,oo)rl/\iaJooaJoo(¢))
- t

(wr1 ()" (w” )T

k,1,00

Cm((gk,l,oo))

e o (0 A D5,0(0) = (@r100) ™ N 0 ()

(wk’,l,oo)r
Cm((gk,l,oc))

Wk 1,00) el . = e
k’ll’)wk,l(t) Y Ni05,05,(¢) — (Wit,00) " A0, 0 (¢)>

Cm((gk,l,oo))

IN
Q

(wr,1(2))
+C |07 ((wh1,00) ™1 A (10,02,(0) = 05050 ) (9)) | . (o
(

(wk’lm):wk’l(tyl - (wk,l,oo)rl> A Z‘thaJt (¢))

IN
Q
RS

M (wk ()t = (Wk,l,oo)T71> A iaJtaJt(¢)>

Cm((gk,l,oo))

o (@)™ Y) N i8,0,(0)
az( Wit o0) — (Wi (£)7) kL (%l(t))ﬂ . >> .
+C Hag ( Wi, 1,00) (ZaJﬁJt(cﬁ) - iéJooaJoo) (¢>)) Hcm((gk‘w))

< (z |0 (wr (e wk,l,oo>>\|cm<(gw) (G2 chm«gw)) 18]l gy 1)
1 (g, e e,y 1 o, i)
< 0||¢>H0m<gk,m)/ﬂ,

where as usual 85, = 9y + ay', 85, = s + a;° so that a)" and a;° and all of their time
derivatives converge to 0 smoothly at a rate of ﬁ, and where we have used the convergence of all
the quantities that appear in the above formulas as s — oo, as well as the previous lemma.

A simple calculation shows (see equation below and substitute in i0,0;,(¢) for the precise
formula) that for k sufficiently large

we,1(t) = AVt (¢) + k_lA’Ht (¢) + O(k_Q)a

and the same formula holds for A

A

Wi 100" Then we have

(Awk,l(t) - Awk,l,oo) (@) = (Ay, — Ay, ) (@) + k1 (Agy, — A,) (0) + O(K ).

In particular the constant in the above inequality is independent of k. Moreover, taking k — oo we
get the second inequality in the statement of the lemma. Finally, we may write

(Ag, = Dg) (0) + O™
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= k(D) — Do + Ave — Ay, ) (),

where the right hand side is O(1) and satisfies the required estimate. Then again taking k& — oo
we get the last inequality in the statement of the lemma. (|

Lemma 4.18. For each j and m we have

KO D =Dy D (6))

wk,l(t)

< Cllgllgm

Cm(gk,loo)

IV

(gk,loo
where the constant C is independent of k.

Proof. By equation [2.7, we have
*
‘ Wi, 1 (t)gwk,l(t> ka 1, oo:Dwk,l,oo ((ZS))‘

Haj ( wi1 () AZ}’“ ! °°) ((b)HCm(gk,loo)
+C H@g (Scal (wk,1(1)) Aui(t) (¢t + doo) — Scal (wk,1,00) By (qboo)) Hcm(gk,m)

o Wit ()72 A oy (0) N 105,05, (0)  (Wi1,00)" 2 A Py o0 N 1015, 0 ()
! (wr,1 (1) (Wr,1,00)"

9 ("

Cm(gk,loo)

+C

Cm(gk,loo)

Applying exactly the same argument as in the previous lemma and using the fact that A, | ;)¢ and
all of its time derivatives converge smoothly, and so in particular have uniformly bounded operator
norm, we estimate:

o (82,0 - 2%,..) (‘z’)”cm(gk,lw)

- H@g (Aw,l(t) (Awkﬂl(t)qb) = B0 B0 (gb))HC’"(gk,m)

= Hag ((Awk’l(t) B Awk’l"x’) Aw’“vl(t)d)) Hcm(gk,loo) * Hag (Aw’“lv‘x’ (Aw’“@(t)qs) B Aw’“l"x’ (d))) HCm(gk,wc)
= CZ(HO Wi (¢ wk’l’o"))HCW((gk,lm)) ‘ ;G?IHCM ,oo))) H¢||Cm(gk,1oo)

+oZ (R S T B omtors ) Wlomuin
< c H¢Hom(gk,m) VA,

where we have again applied lemma [£.16]
Similarly

(w1 (1)) (Wk,1,00)"

o (Wk,l(t)T_Q A Py (6 N192,07.(6)  (Wh1,00)" 2 A Puogey o A iaJooaJoo(cb))
t

Cm(gk,loo)

i 0,1
dray’

I
< C (Zz% Ha; (wr,1(t) — (wk,l,OO))HCm((gk,lm)) ‘ Hcm((gkylyoo)) + ’

; (pwk,1(t) - pwk,L‘”) Hcm((gk,l,oo)))

(1Sl (g 100
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HighO
Qg H

IV

where the estimate on H(?% (pwk )~ pwk’lm) H

i 1,0
Opay’

((gk,1,00)) ‘ Hcm((gk,l,oo)) ‘

+C (Z‘

< Clgllem

i 0,1
1) Wl

(gk,loo

in terms of the other quantities appearing
Cm((gk,l,oo))
in the above formula may be performed in exactly the same way as in Lemma and where we

use Lemma to conclude that the resulting constant does not depend on k.
Finally,
107 ((Seal (W (£) Au, 1) (9) = Seal (Wi 100)) A (@)

cm (gk,loo)

< Hag ((Scal (wk,1(t)) — Scal (wk,1,00)) Dy 1 (1) (¢)) Hcm(gk,m)
T Hat] (Scal (Wr,1,00) (Awk,l(t) (¢) - Aok 1,00 (qboo))) HC’”(gk,mo)
< O[of ((Seat (wra(8)) = Seal (@110, 1€l

+Cj0 ((Bunao (8) = Bose 6)) g 1¥llem g1
< C/VA,

by the previous lemma and where again the difference of the scalar curvatures may be computed
as in Lemma [2.7] for large values of ¢t. O

Lemma 4.19. There ezist ¢ > 0, K > 0, such that for all p,e and q as in Lemmd2.7 and every

H (X(t)7 XOO) HW4,p+l,q,w5(s)(gk,l,OO)XLi(p+1)(gk,1,OO)

= NOONW, i1 g e o000 F X0l 0 < €

the operators

(d(x(t),xoo) - dO) (Scalwk,l(t) - Scalwk,l,w) W 1 guoe () (G, 1,00) X L4 1) (9, 1,00) = Wit pig— 1,00 (5) (9, 1,00)

have a uniform bound

H( ):Xo0) ) (Scalwk 1) — Scalwk’l"x’) H < ¢ (‘( ( )||W4 ,p+1,q, ws(S)(gk 1,00) + HXOO||L4( +1)(9k 1 00))

for the operator norm.

Proof. Applying Lemma and regrouping terms strategically, we may write

(d(X ) (Scalwk,l(t) - Scalwk,l,oo> (d’tz ¢OO)

2
Awk 1 +szt8Jt (Xt+Xoo) - Awk 1 t)) (¢t>

2 2
T <Awk 1(t)+i01,87, (xt+Xxo0) A"Jk 1(t) T A‘”’v Loo Awk,1,oo+i5JooaJoo (Xoo)) (éo0)

+ (Seal (wr100) = Seal @it () (A | 15,0y (o) (950) = Du o (600))
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+Scal (wk,l(t) +1i0,07,(x¢ + xoo)) (Awk oo tiB By (xo0) (¢oo) — wk,l(t)+i5Jt8Jt(Xt+XOO) (¢ + ¢oo))

+5cal (wk’l(t)) (Amc 1,000 766 0706 (Xoo) (¢°°) N Wk:,l,oo (dos) + Awk,l(f) (¢ + doo) = wk 1,000,106 0.1 (Xoo) (¢00)

(wk,l,oo"l‘igJoo 0o (Xoo))
n (wk,1 (t)+i07,0.1, (Xt+Xo0)

— r—2 —
7 (@ () + 02,0000+ X00)) A P 01480, x00) P D50 (91 620)

(‘-Wal,oo +i0.. 0., (Xoo))r

Wh.1.00+10 o0 oo (Xoo " r— —
(w1, ?wal(t)jT (x)) (wk,l(t)) 2 A P (t) N 10,0y, (pr + (boo)

(u)k,Loo + 10,0 (Xoo)) '

(Wk,1,00+10 700 0 (Xoo))r
(wk,l,oo)r

(Wh1,00)" 2 A Py o N 101,001 (Do)
(Wlal,oo +10,7,,0.., (Xoo))r
(Wh,t00 + 105000 (X0)) T2 AP i 0y (o) N 107200 (D0)
B (w10 + 01,01 (X))
+ (Scal (wkyl,oo +1i07, 0., (Xoo)) — Scal (wk,l(t) +104,07, (xt + Xoo)) + Scal (wg,1(t)) — Scal (wm,oo)) A

Arguing in exactly the same way as in the proofs of Lemmas and above, we conclude that
there is a bound

H (d(X(tLXoo) - dO) (Scalwk,l(t) - Scalwk,l,oo> (0t Doo) H

S C H (X(t)’ XOO) ||W4,p+1,q,w5(s) (gk,l,oo) XLz(zﬂ,l)(ng,oo) H (¢t7 ¢OO) HW4,p+1,q,w5(s) (gk,l,oo) XLz(zH,l)(gk,l,oo)

+

Wk, 1,00 10 50 00

W4,p,q71,w5(s) (gk,l,oo)

+C H (Scalwk,lyoo + 07,01, (Xoo) — Scalwy 1(t) + 04,0, (xt + Xoo) + Scal (w1 (t)) — Scal (wk’lyoo))‘
X (| pooll 2

Wi p,a—1,we (s) (9k,1,00)
4(p+1) (9K,1,00)
+C prk 1(6)+i05,07, (Xt +Xoo) pwk,1,oo+i5JooaJoo (Xo0) + Pr1,00 = pwk,l(t)H

< [|(¢1, ¢oo)

W4,p,q71,wg(s) (gk,l,oo)
||W4,p+1,q,w5(s) (gk,l,oo) XLi(p+1)(gk,1,oo) :

To bound the last two terms, we generalise the argument of Lemmas 2.7-2.10 of [F] If we write

i1 (Xt Xo0)s k.1 (Xoo), 9,1 (t), and gy, 1,00 for the metrics corresponding to wy,1(¢)+i0.7,9, (Xt +Xoo):
Wk 1,00 + 107,007, (Xoo), Wk1(t), and w1 o, We may write

Gea(Xt +Xoo) = Gr1(t) + i1 (Xe + Xoo)
Ie1(Xt + Xoo) = g1 (Xoo) + Hr1 (Xt + Xoo)
9k, 1(Xoo) = k1,00 T hk,l(XOO)
gr1(t) = Grico + Hia(t)

for some symmetric two-tensors hy 1 (Xt + Xoo), k1 (Xoo)s Hi 1 (Xt + Xoo),and Hy 1(t), where
Hi 1 (Xt + Xoo), Hi1(t) € Wzgp-‘,-l,q,ws(s) (9k,1,00)5

and

CI(x(®), Xoo

Cll(x(8), xoo

[ H,1 (Xt + Xoo)
||hk,1(Xt + Xoo) — hk,l(XOO)

<
‘|W4,p+l,q,w5(s)(gk,1,oo) - )||W4,p+1,q,w5(s)(gk,1,oo)XLi(p+1)(gk,1,oo) ?

IN

HWél,p+1,q,w5(s)(gk,1,oo) )||W4,p+1,q,wg<s)(9k,1,oo)XLZ(;,H)(Qk,Loo) ’
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Vo1 (Xoo )l 2, < x|

p+1)(9k,1,oo) Li(p+1)(gk,l,oo)

may be made arbitrarily small by making

H (X(t)’ XOO) ||W4,p+1,q,w5(5)(gk’1,00)XLi(p+1)(gk7la°0)

arbitrarily small. For the respective Levi-Civita connections, we have

Viititxe) = Vaa@ T ak1 (Xt + Xoo)

Voititxe) = Varilxeo) T 0k1 (Xt + Xoo)
Vi) = Vi T ak,1(Xoo)s

Vot Vi1 1+ Or1 (1)

where

a1 (Xt + Xoo) * (Gr1(8) + he1 (Xt + Xoo)) =~V 1) (hra(Xt + Xoo)) s
ag,1(Xoo) * (Gk, 100 T Ak 1(Xoo)) = Vit (Pr1(Xoo)) s
bi,1 (Xt + Xoo) * (Gh1(Xoo) + He1(Xt + Xoo)) = =V 1 (xee) (Hr1 (Xt + Xoo))
b (t) - (91,00 + Hia(t) = =V o (Hia(t))
where - is the algebraic operation carrying out the identification T*X ® End(T*X) ~ (T*X)®3.
From the above definitions, we obtain that

g1 (Xt + Xoo) = Gk100 + Hig1 (Xt + Xoo) + hie1 (Xt + Xoo),
Ie1(Xt + Xoo) = k1,00 T Hi1 (1) + Py (Xoo),

Viaertitxse) = Vaeu®) T ak1 (Xt +Xoo) = Vg, o +0p1(t) + ar1 (Xt + Xoo)
Voaeiltitxse) = Virixee) T 01 (Xt +Xoo) = Vg1 o+ ar1(Xoo) + bk1 (Xt + Xoo)

and therefore in particular

b1 (Xt + Xoo) = b1 () + ar1 (Xt + Xoo) — a1 (Xoo)-

Then for the curvatures of the various metrics, we calculate

R(gr1 (Xt + Xoo)) — R (g1 (1)) + R (9k,1,00) — B (91,1 (X))
= R(gk1,00) + Vg0 (k1 (1) + ara (xt + Xoo))
+ (b1 (1) + ar (Xt + Xoo)) A (bra () + ak1 (Xe + Xoo))
—R(gk,1,00) = Vigroo (br,1(t)) — br1(t) Abpa(t)
+R (9k,1,00) = B (gk,1,00) = Vigp1,000k,1(Xoo) — ak,1(Xoo) A ak,1(Xoo)
= Viereo (@1 (Xt + Xoo) = k1 (Xo0))
a1 (Xt + Xoo) A br1(t) + b1 (t) Aak (Xt + Xoo)
Fak1 (Xt + Xoo) Ak (Xt + Xoo) = @1 (Xoo) A ak,1(Xoo)
= Ve (ar,1 (Xt + Xoo) — @k,1(Xoo))
+ (ar,1 (Xt + Xoo) = @r,1(Xoo)) A bk, (t) + b1 (8) A (ak1 (Xt + Xoo) — ak,1(Xoo))
+ (ak,1 (Xt + Xoo) — @k,1(Xoo)) A (ar1 (Xt + Xoo)) + ak,1(Xoo) A (ak,1 (Xt + Xoo) — @k,1(Xoo))
+ag1(Xoo) A bk 1(t) + bi1(t) A aki(Xoo)
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Then we obtain

1R (gk,1 (e + Xoo)) = B (k1 (1) + R (gh,1.00) = B (Gka (oo D)l o)

= ¢ (Hak’l (Xt + Xoo) B ak’l(Xoo)||W47p+1,q,ws(s>(9k,lyoo) T Hak’l(Xoo)HLi(pH)(Qk,l,oo)) ’

where by Lemma the constant is independent of k.
In order to estimate these quantities we write:

ar1 (Xt + Xoo) * (9k, 1,00 + Hi1(t) + hi 1 (Xt + Xoo)) — k1 (Xoo) * (91,00 + Pk1(Xoo))
= vgk,1,oo (hk,l(XOO) - Hk,l(t) - hk,l(Xt + Xoo)) 5
so that

(ak,1 (Xt + Xoo) = ak,1(Xoo)) * Gk,1,00

= Vire (M1 (Xoo) = Hg1 (1) = o1 (Xt + Xoo))
Fag,1 (Xt + Xoo) - (Hi,1(8) + e (Xt + Xoo) — Pk, (Xoo))
+ (ak,1 (Xt + Xoo) = @k,1(Xoo)) * k1 (Xoo)

= Vet oo (271 (Xoo) = i1 (Xt + Xoo)) — Hi1 (Xt + Xoo))
Fag1 (Xt + Xoo) - (Hi,1 (Xt + Xoo) + 2 (k1 (Xt + Xoo) — hk,1(Xoc)))
+ (ar,1 (Xt + Xoo) = ar,1(Xoo)) * P (Xoo),

and so

l[(ar,1 (xt + Xoo) — ak,l(XOO))HWMH’%W(S)(%,LM)

= H(a’k,l (Xt + XOO) - akal(XOO)) : gkvlvoo”W4,p+1,q,ws(8)(gk,l,oo)

Ct (11 (xoo) = o1 (X2 + Xoo)
+C Hhk’l(X"O)HLi(pH)(gk,Loo) [l (@r,1 (Xt + Xoo) — a’“l(x‘x’))HW4,p+1,q,w€(s)(9k,1,oo) ;

IN

||W4,p+1,q,w5(s)(9k,1,oo) + HHk’l(Xt + XOO)||W4,p+1,q,ws(s)(.‘;Uc,l,oo))

and so for

H(ak’l (Xt + XOO) a ak’l(Xoo))HW4,P+1,q7w5(S)(gk,1,oo)

(7.1 Oxoo) = e (e + Xo0)

I O+ Xl i)

||W47P+1,q,wg(s) (gk:,l,oo

1.1
<1 5C ||hk71(Xoo)||Li(p+1)(gk,1,oo)> )

C H (X(t)7 XOO) HW4,p+1,q,w5(s)(gk,l,OO)XLi(p+1)(gk,1,OO)

IN

where we have taken ¢ < %02_ ! In a completely analogous way we achieve a bound

9

) < Il

||ak,1(Xoo)”Li(p 2 o1 (9K 1,00)

+1) (gk,l,oo

and so finally we get

1R(gn,1 (Xt + Xoo)) = R (gr,1(8)) + B (gh,1,00) = B (gra (o)) llw, 1o (g

g || (X(t)7 XOO) HW4,p+1,q,w5(s) (gk,l,oo)XLi(p+1)(gk,l,oo) ‘

Since the Ricci and scalar curvatures are contractions of the full curvature, the same estimate also
applies to them, and we obtain the required bound. O
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Later we will need the the following lemma, which says that the constant in the parabolic estimate
7.10]is independent of the parameter k.

Lemma 4.20. Let Lyy) be a path of smooth self-adjoint elliptic operators of order 4 on P(E)
converging smoothly to an operator Le. Suppose (s(t)) € Wyp q—1.(s)(Gkl00)s and P(s(t)) L
ker Loo for all s. Then there is a constant A, depending only on p,q,e, such that for the solution
o(s(t)) € WP (Gk1,00), Of the initial value problem

p+1,q,we(s)
0D | Ly 6(sa) = wls0)

Os
#(0) = ¢o

and sufficiently large k, we have an estimate:

H (‘b(s(t)) H Wi(p+1),q,we () (k,1L,00)
< A(lolzs,, + GO Nw,, o to0n)

The constant A is in particular independent of k.

5. THE APPROXIMATE SOLUTIONS

5.1. The approximation theorem. We fix the bundle (E, h) — (X, ws) and the projectivisation
P(FE), as in the preceding sections, but from here on out we require wy, to be a metric of constant
scalar curvature. We will at times move the hermitian metric A on the bundle E, and other times
we will need to move the holomorphic structure &, which is tantamount to moving the operator 9
on P(F). In the second case, we will need to consider various one-parameter families of geometric
objects o(t), associated to this moving family d;,. These families will always converge smoothly.
Then if we write |o(¢)| for the pointwise, the notation

a(t) = O(k™)
means that there is a constant C' independent of ¢ such that
lo(t)] < Ccr.

In case we move the hermitian metric instead, we will obtain one parameter families (¢) = g; (o (¢)).
Since the g; are not converging, these families will not converge, but by a small abuse of notation,
when we write

we will simply mean that

has the above stated property.

With this in mind, the main goal of this section is to write down a formal approximate solution
to the Calabi flow equation in the sense that for a sufficiently large choice of an auxillary parameter
k, we will produce for each [ a path of Kahler metrics wy;(s(t)) (compatible with the holomorphic
structure Jy;) where s =t - 7/k) such that

8?]:(15) (Wk,l (s(t)))
ot

More specifically, we will prove the following theorem.

+i00Seal (5 (wra(s(1))) = Ok~ 1HD).
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Theorem 5.1. Let (E,h) — (X,wx) be an Hermitian vector bundle over a Riemann surface,
equipped with a constant scalar curvature metric. Fix a smooth connection A = Ay which is the
Chern connection (O, h) for holomorphic structure giving rise to holomorphic vector bundle € = &.
We assume that this holomorphic structure is simple, and has the property that the associated graded
object of its Harder-Narasimhan filtration contains only stable factors.

Fiz k >> 0. For each | > 1, and for any fived number S € [0, 00), there is a path n? € su(E), and
paths of Kéhler potentials Oy () € T*C®(2), Zxm(ny) € O (P(E)), and Q. (t) € C°(P(E)) 1,
on P(E), and smooth, functions Ok m co; Zkm,cos aNd Qm 0o such that for each k and I and every
1 <m <, and all p,q, and ¢, the following hold

o The paths of functions Oy, (), Ek,m(nf), and Q. (t) converge to O m oo, Skm,cos and
Q1,00 Tespectively in C(X) as t — oo. Furthermore, if we define

(5.1) wiy(s(t)

-1 -1 -1
= w(h, J,) + kr*ws, +i0;,0;, <Z E0 () + Y kTS () + Y k:<m+1>9m(t)> :

m=1 m=1 m=1

where s =t -1/k, then wy(t) converges smoothly to a Kéihler metric

(52) Wk, 1,00
_ -1 -1 -1
= w(h, Joo) + km*wy, + iajooa]oo <Z kim+1@k’m’oo + Z kimEk’m’oo + Z k(erl)Qk’m’oo) ,
m=1 m=1 m=1

where Joo is the holomorphic structure corresponding to the manifold P(E~) = P(Gr€),
arising from the limit of the Yang-Mills flow.

o Writing wy(s(t)) for wlf,l(s(t)), for each | there exists a path H (wy (s)) of smooth functions
such that if Vi is the time dependent infinitesimal generator associated to gs, for all s €
[0, 5]

(53) Tkil (80032(8) + L:szkJ(S)) = ié]sajsH(wa(S)).

e Moreover,

Scal (wi,(s(t))) + H(wgk(s(t)))
(5.4) = Scal (wFS(IP’Tfl)) + k71 (Scal (wy))

_ l l l
+ Z k M(‘I’(z?M(S) + \PEDL,M(S) + \I]S_)l(s))
M=i+1

— O(kf(l+1))’
so that in particular
i0.,,0,, (Scal (w1 () + H (wii(s)) = O (kD)
e There is a smooth function H(wg 1 00) such that
(5.5) H(wiy(5) S H(wpi0)

and we also have
Scal(wg,(s(t))) i Scal(wk,00)
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so that in particular

Scal (Wi ,00) + H(Wkioo) = Scal (wFS(JP’T_l)) + k71 (Scal (wy))

o0 S VR CVRER R TN E)
and
(5.7) i07.,0., (Scal (Whi00) + H (Wi 00)) = O (k—(Hl)) )

e The path of Kihler metrics &y 1(s(t)) = g (wri(s(t))) on the fized complex manifold P(E)
formally solves solves
- . B
&””8(;()) +i0,0 8cal (& (s(1))) = Ok~ D),
for s €0, 5].

o Finally there are estimates of the form

H‘I’QM(S)—‘Pg?M,ooHw&pqq’ws(s)(gkm) = Ok'?
(5.9) [ ) = ¥ el = OB
|90 90 ] — Ok,

W4,p,q,w5(s)(gk,l,oo)
for all M > 1+ 1, so that in particular

(5.10)  [|Scal(wr,(s)) + H(wk(s)) — (Scal(wk,i,00) + H(wh,00)) < Ok~ +1/2)

||W47p,q,w5(s)(9k,1,oo) -

for all p,q, and €.
o In fact, the same estimate is true using the metric g oo instead of gi 1,00, that is:

(5.11) |Scal (wr,(s(t))) + H(wr(s(t)) — (Scal (Wi1,00) + H(Wki00))
= Ok~ H12),
for all l.

H Wy p.q,we (s)(9k,1,00)

Remark 5.2. The parameter S appears in the above theorem because at a certain point in the
proof we will have to introduce a cutoff function supported in the interval [0,2S5], where the choice
of S is arbitrary. The theorem gives an entire one parameter family of paths of metrics w,i 1(s(1)),
with each choice of S giving a different path. Mostly however, we will omit the S superscript, unless
it is absolutely necessary.

5.2. The scalar curvature expansion and the approximation to second order. The proof
of Theorem will be by induction on [. The sequence of lemmas in this subsection will give the
result for [ = 1. Our ansatz for the metrics in Theorem will be given by the family of two forms
on P(F) associated to the path of connections A, at time s = ¢-7/k. Below we will sometimes write
one parameter families of objects on P(E) as being functions of the variable s(t) to emphasise the
fact that they are functions of ¢ and k. Define

(5.12) wi1(s(t)) = w(h, Js) + kws,
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and
Gk, (s(1))
(5.13) = G; (wri(s)) =w(hs, J) + kws.

We will begin with a general lemma that holds for any path of connections with uniformly
bounded Hermitian-Einstein tensor.

Lemma 5.3. For any path A: of connections on E (that is, ||AwgFa,|lre < C), so that the
associated two forms

wi(h, Ji) = w(h, Ji) + kws
are Kihler, the scalar curvature satisfies the following pointwise expansion in powers of k™1
Scal(wg(h, Jt))
(5.14) — Scal (WFS(IW—l)) kN (=2rB (A FS,) + Scal(ws))
+ Zk (Us(t) + Vo, 1(t) + W1 (t)),

where Ay F'3, is the trace-free part

o tr (Au. Fa
szFAt :AngAt _ (“;Et)

Idg
of the contracted curvature, and where

Usi(t) + Vo, 1(t) + W1 (t) € 7 CF(E) @ Pp(su(E)) © CF(P(E)) L,
so that if we set

2r

(5.15) H (wi (b, Ji)) = 2 (@ (Auws F3,))
then in particular
(5.16) ia]ta]t (Scal (wk(h, Jt)) + H (wk(h, Jt))) =0 (k72) .

Similarly, if Ay converges smoothly to a limit Ax, giving rise to a (unique) limiting holomorphic
structure Joo, then for the limiting metric

wi(h, Joo) = w(h, Joo) + kws,
there is an expansion of the form
Scal(wg(h, Jx))
(5.17) = Seal (wps(P"™)) + k7 (=2r®n(Auy F3 ) + Scal(ws))
+ Zk‘ (Vs t00 + Vo 100 T V1 100)

so that if we set

(515) H (o (b, Joe)) = T (B0 (A F5..)

10,01, (Seal (wy, (h, Joo)) + H (w (h, Juo))) = O (k72) .
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Proof. In order to calculate the scalar curvature, we will first calculate their Ricci forms and then
take a trace. Recall from Sectionthat the hermitian metrics gy 1(t) = gi(h, J;) € T (T*P(St) ® T*P(St))

(associated with the Kahler forms wy1(t) = wg(h,J;)) on P(&) induce the Hermitian metric

<wk’71,!(t)) € T'(Kpe,) ® Kpg,)) on Kpiey = det(TP(&;)). Moreover, and the Ricci curvatures

((wk,l( ))T

r!

Ric(wg,1(t)) are given by iFgx ), the curvature of this induced metric on the anti-

. P(E¢)
canonical bundle.

By definition
wi 1 (t) = wrs(h, Ji) + (4 (=Auwp Fa,) + k) ws.

Since wpg(h, Ji) and (Pp(—Awy Fa,) + k)ws, are positive definite on V; and H; respectively, they
define Hermitian metrics on these bundles, and therefore the forms

(wrs(h, Ji)"
(r—1)!
are the induced Hermitian metrics on Az 'V, = det(V;) and det(H;) = H; . We may decompose the
(M) into the curvatures i Feq(y,) (%) and i Py, ((Pp(—Awy Fa) + k) wy),

r!

€ I(det Vi @ det V) and (®p,(—Awy Fa,) + k)ws € T(HF @ Hy)

curvature 7 Fg*
P(&t)

of these induced metrics.
Namely, from the exact sequence

00—V — TP(&) — Hy — 0,
and the decomposition of wy, 1(t) there is a smooth, metric splitting
(TP(&), w1 (1) = Ve, rwrs(h, Ji) © (He, (Pr(—Awg Fa,) + k) ws)

and taking determinants this gives an isometric isomorphism

T r—1
e e (detvt, el ) © (M (@1(~ N Fa,) + ) )

since H; is a line bundle. Therefore

(((I)Z(_AWEFAt) + k) wy, + wFs(ha Jt))r)
rl

(wrs(h, Jt))’"_1>

pulwa(0) = iFi, = id50og (

(r—1)

) + iéjt&]tlog (((I)h(_AngAt) + k) wg)

= iéJtaJthg <(¢;(L(_AUJZFAt) + k) wy &

(wrps(h, J;)) ™
(r—1)

r—1
- iFdet(vt)<(“FSEf’_‘])l()?) )+iFHt (Pr(—AuwsFa) + k) ws)

= iéjta]tlog (

r—1
To calculate iFdet(Vt)(%), consider the Euler exact sequence

0—C— (&), ® O]p((gt)z)(l) — TP((&),) — 0
which globalises to give an exact sequence
0= C— 7" ®Ope,y(1) =V =0
over P (&;). Then this gives an isomorphism

detVy 2 detE ® (Op(gt)(l))(gT.
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r—1
Under this isomorphism the metric % corresponds to the tensor product of det h, with

the metric induced by h (through its dual) on Opg,)(1). Therefore
1EFgery, = TiFhEt = rw(h, Jt) + iF(det h,det &)
= rwps(h, Ji) + r®p(—Awy, Fa,)ws + itr(Fa,)

We may also think of wy; as giving a different metric on H; whose curvature is exactly py, so we
have that

_AWEFAt) + k) wZ)

, .5 o
ZF’Ht —py = zaftﬁjtlog <( h(
wy

= i0,,0y,log (1 it (@2(—AWZFAt))) .
Therefore we obtain

pr(we1(t) = iFen, = iFaerv,h + iFy n
= rwps(h, Ji) + r®p(—Awy, Fa,)ws + itr(Fa,) + ps

+id, 5109 (14K (2n(~Au Fa,))
(5.19) = ers(h Ji) + r®p(—Awg Fa, Jws + itr(Fa,) + ps

+Z Wk 04i05,0;, (@n(=Aus Fa)) )

where we have used in the last line that log(1 +z) = > (—1)j+1$717 for |z| < 1 (note that k >> 0).
j=1
Now the scalar curvature of wy1(t) is by definition Scal(wy(h, Ji)) = Ay, ;) (pr(wk,1(t))). For

v € A%2(V*) and 3 € H* define the vertical and horizontal traces by
B

r—2

YA (wrs(h, Jtzzl and A, (3) = 2

(wrs(h, J¢)) wys
where the above are to be thought of as quotients in the determinant lines of V* and H*. Let
vy @ Q2(P(E)) — A2V* and mpy : Q*(P(E)) — H* be the projections onto the respective
summands, where we are using the C™ splitting Q?(P(E)) = A?V* @ (V* @ H*) ® A’H*. Let
a € 2(P(E)).

By definition we have:

Aops(hyan () = (r=1)

A (wra(8)

Awhl(t) (Oé) =
(wk 1(1))
_ mvv(@) + mm(a) A (wrs(h, Jt)) + (Pa(—Awp Fa,) + F) wy)) !
(wrs(h, Jt) + (Pn(—Aws Fa,) + k) ws)"
~ o) (ryv () A (wrs(h, J1) 2 A (Rr(—Aug Fa,) + k) wy)
(WFS(h> Jt»r—l A (((I)h(_szFAt) + k) wz)
() A (rwops(h, J) !
(®r(—AwpFa,) + k) ws) A (wps(h, Jp) ™
— e 1)7rvv(a) A (rwpg(h, Jp))" 2 (o)
(wrs(hy J)) (Pn(—Awg Fa,) + k) ws)
(5.20) = Aups(na)(mvv(a)) + ()

kews; (‘I’h(—/\:gFAt) + 1)
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1
(@;(—A]:E Fa,) 4 1)

A s (Tvv (@) + k Apy (mr ()

AwFS(h g @y (@) + k7 Ay (mra(a))
+Z k™D Ay (@) (95 (—Aug Fa, )’

where in the last line we have used the Taylor expansion of 1/1 + x.
Applying this to pi(wk,1(t)) we therefore obtain

Scal(wia(t) = Ay, @) (pr(wra(t)))
= AwFs(h Jt)(WVV(pk(Wk 1) + k™ Aoy, (mar (or (wr1 (1))

+Z DA s (mr (or (Wit (1)) (@4 (—Awg Fa,))!
(5.21) = Scal (wFS(IP’T_l))
+kt (Scal(ws) — 1@ (Awy Fa,) + Ay, (Pn (=AM Fa,)) +itr(Auy. Fa,))

_ i k~UTDA, <(‘Ph(szFAt))j+l)
=1

+ 3 kY (Scal(ws) — 1@ (Awg Fa,) + itr(Aw, Fa,)) (@h(Awy Fa,))!
=1

=S RO A, (@ (Aus Fa)) ) | (@n(AusFa))
1=0 \j=0
Now we have by Lemma [4.11
_T(I)h(AngAt> — Avt(I)h(szFAt) + itT(AwEFAt)
tr (Aws Fa, o
= =2r®p (A Fq,) —itr (Aug Fa,) +itr(Aug Fa,) = —2r®,(Au. Fg,),

tr (A, F
= —1®,(Auy F5, + w

IdE)> +itr(Aug Fa,)

since itr (Ayg Fa,) is pulled back from ¥, and therefore annhilated by Ay,. We therefore obtain
Precisely the same calculation holds for the fixed holomorphic structure J, which gives the
expansion for Scal(wk(h, Jx)). O

The following lemma shows that if we choose our path of connections to satisfy Yang-Mills flow
at the appropriate speed, as discussed at the beginning of this subsection, the resulting path of
metrics actually gives a solution to Calabi flow on P(E) up to the diffeomorphisms gs and up to
second order in powers of k1.

Lemma 5.4. Let A, satisfy the Yang-Mills flow at time s = t - r/k, inducing Kdihler metrics
wi1(s) = wi(h, Js) and G (s) = g (wr(s)). If H(wg(s)) is as defined in Lemma[5.3, then there
is an equality

0wy, 1(5)

_ 9 _
(5.22) rk=! ( 05 + ﬁngk,l(S)) =107,07, <]:<I>h(FAS)> = ia]SaJSH(wa(S))

where Vs is the time dependent infinitesimal generator associated to gs. This implies

8@&1(8)

(5.23) 5

=i0,;0,H (@r1(s))
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and in particular
8@2715(8) +1i0,70;Scal(@r1(s)) = O(k™2).

We also have
0.0y, (Scal (g 1.00) + H(wk 1,00))

_ 2
(5.24) — 3,0y <Scal (@htoe) + 7 B (AWEFAOO)) —0(k?).

Proof. Let g5 be the complex gauge transformation associated to a solution A of Yang-Mills flow,

and V; be the time dependent infinitesimal generator associated to gs, namely the one parameter
family of vector fields given by

_d(g,°9:")
‘/:9 - dihu:s
w
of g}. By Lemma [£.9we have

= 0iFy, Ow(hg, J Owy, (hs, J A (wia (hy Ty
2i0;05 (®n(Fn,)) = g; 2 (83 ) kfas ) _ 95! kals( )

We also have that

B na(0) g (Bosale)

s s + ['szkz,l(s)) ;

and therefore

2rk™1 (107,05, (®n(Aws Fa,))) = 2rk™ (G, 1) (10,0 (Ph, (Auws Fr,))

0wy 1(s
rkl(ka’;() + Ly,wy1(s)),
which is equation [5.22] In the same way, we have
a&\)k71(8) I, 18&% 1( )
ot Os
= 30 (102,02 H (wp1(9)))
= 10,07 H (Wr,1(5)) -

which is equation [5.23]

Recall that there is an action of each gs on the space of Hermitian metrics given by equation , so
that the family of metrics g5 - h = hy solves Hermitian-Yang-Mills flow. Then applying Lemma
to the Yang-Mills flow and pulling back by the diffeomorphisms induced by g¢s; and using equation

and more generally, Lemma gives
Scal(@r,1(s)) = Scal(gs(wra(s)) = gg(Scal((wr,1(s))
= §*(Scal (wFS(IP”"_l)> + k(=27 Dy (Awy Fa,) + Scal(ws))

+ Z KG5 (Ws(s) + Yoy, i(s) + U1 i(s))
= Scal (wFS(IP””*l)) + kN (=2r®, (Awy Fi,) + Scal(ws))
+ Z - ((Usi(s) + W, i(s) + W ia(s)).

Therefore, by equation [5.23] we get
z'éJ@JScal(d)k’l (s(1)))
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8w
= kl +Z’f (Usu(s) + Yo, i(s) + ¥i(s)),
and so
a . A N
g @r (5(8))) + 80,05 Seal (@1 (s(1)))
= Z - (Wsa(s) + T, a(s) + T ry(s))
= 0(152).
The last statement is exactly the same as the last statement of Lemma O

We now claim that each of these functions is in an appropriate parabolic Sobolev space with
respect to the Kéahler metric wy 1.0 on P(€x) defined in Section The following lemma and its
corollary will be of crucial importance in the sequel.

Lemma 5.5. For each k and each | > 2, the functions Vs (s), Ve, 1(s), V1 (s) appearing in
the expansion of the scalar curvature of the Kdhler metric wy(h,Js), converge in C*°(P(E)) to
smooth functions Vs | o, Vo, 1.00: V1 1,00 0n P(E) and for each p,q and €, we have that the func-
tions U5 1(s) — Vs oo, Vo, 100(5) — Vo, 100, and Vi (s) — W, ;o lie in the parabolic spaces
Wy pgawe(s) (Gk1,00) for all p,q, and € and more precisely

s1(5) = Usi00l Wy 0we oy @) = O(k"/?),
(525) H\Ij@h,l,oo(S) — \I"Cbh,l,oo ’ |W4,P,q,wg(s)(gk,oo) — O(k‘l/2),
1P 1108) = Pl o0l lWyp g ey (@) = O(kV/?).

Proof. The precise expression for the scalar curvature equation [5.21] gives that for each [ > 2
Uy(s) = Usi(s) + o, 1(s) + U1 (s)
= (A ((Pa(AwpFa))) + (Scal(ws) = r®p(Aug Fa,) + itr(Awg Fa,)) (Pr(Aws Fa,))' ™!
= D A (@r(Aug Fa ) ) (@n(Awg Fa,))™
m-&-yjr‘L-’i-jQ:l
We have by Lemma [4.17)that Ay, — Ay, and Ay, — Ay ( in the operator norm induced by the
CP norm for each p) at a rate of %, and by Lemma, ®p (—Awy Fa,) converges (and is therefore

also bounded) in the C*° topology, at the same rate. On the other hand for the case i = 0, for any
p=0

|Av (@A Fa))) = Av (@r(Mug Fa )|,
= ||(Av, = 2v (@ (Aug Fa))) + Av (@n(Aus Fa.))' = (@n(AusFa))|

< Jav = 2vlll- I@n s Fa)) s + 1Ayl 19n(Aug Fa)) = <<I>h<szFAw>>l>Hop
XN (@h(Aus Fa)) !+ + (@n(Aug Fa)) o)
C

<

%7
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for s sufficiently large, where we have used the fact that the C? norm of a product of two functions
is bounded by a constant times the product of the C’®* norms, and Lemmas and again.
Similarly we obtain

IN

<

8%, (@n(Aus Fa, ) (@0 (A Fa))™ = A (@n(Aug Fa ) (@n(Auy FaL))|

1Az, = Ag ) (Pn (A Fa, )V ) (@ (Awg Fa,)) " low

A (Pr (A Fa, ) (@ (Aws Fa )™ = Aty (Pn (Mg Far ) (@ (Aws Fa )™ low

CllAy, — Ay ||+ ([|Pr(Awg Fa,) — Pr(Awg Fa)||or

X A% (P (Mg Fa, ) T (@n (Mg Fa )™+ - + Agy (Pn(Awg Far, VT (@ (A Fan )™ Hler)
Cll Ay, — Ay ||+ Cl[®n(Awg Fa,) — Pp(Awg Fa)llcr

o

NG

cp

for s sufficiently large. Therefore setting Us ; o, Vo, 1,00, ¥ 1 1,00 €qual to the the images under the
projection maps (defined by the decomposition of C*°(P(E))) of the function

(B (Bn(Aug Fa))) + (Seal(ws) = r®n(Aum Fa.) +itr (Mg Fa))(@n(Auy Fa)) !
> Ar (@B Far V) (@A Fa )™,

Z?]
i+j+2=l
and applying lemma we have Uyx;(s), Yo, 1(5), V1 1(5) = Us oo Vo, 100, Voo in C at a
rate of %
S
For any i > 1
. A . , C
U 7 U — ?
o, - Joian,, i@ Pa))] , = |@n@daPa)] , <

for all p and and all s sufficiently large, where we again use Lemmas and and the fact

that @, is independent of ¢, and where ||0L(Avys)| o » [|[0L(AY,)

cp are the operator norms induced

by the C# norms. All these quantities are in particular bounded, so that for i > 1 we have

108
\/g?

di(wi(s),, < (Z 108 (Av,) e + 102 (Ase)ll o + ||¢>h<83szFAs>||cp) <
a=1

and in particular 9%(¥;(s)) — 0 in C°°.
Now comparing the CP norms with the Sobolev norms, we have in particular that for every ¢ > 1
and s >0

IN

‘ 3@(‘1’1(5))‘ L3(9k1,00)

”\Ijl(s) - \Ill,ooHL%(

(vol(P(E), gr,1,00)) " ‘ 82(%(8))‘ CP(gi,1,00)

(vOl(B(E), gi.00)) " 91(5) — Wl gy, -

<
gk,l,oo) -

Now we can argue just as in [F|, using Theorem 5.2 of that reference to prove that the volume
form on a sufficiently small ball B around any point p € ¥ is equal to O(k) times a fixed form,
and therefore vol(B, gk.1,00) = O(k). Covering ¥ by balls of this type and summing up the volumes
therefore gives vol(P(E), gk1,00) = O(k). Notice also that

) = Oi(msTy(s)) = 9L Ts(s)
) = Oi(ma,«Vi(s)) = 0.V, i(s)
) = Oimr,, Wi(s)) = LWL (s),

T (0L (Wy(5)
7, (OL(W1(s)
(s)

T % (8;(\111 S
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since 9! commutes with pullback and with ®,. Therefore, by Lemma we obtain that for each
1 >1

|0 ws(s) 0, 1(5)| 0,4 (5)] < O

’ L2(gr1,00) 157 L2(gi1,00) 1175 e L2(gk100) s

s~ Uil e [ Waps — o s 10 4() — W] < OWR)
, OO L3 (k,1,00)5 hs Rt L2 (g,1,00) ' HONL2(gr1,00),  — s

We then obtain for the parabolic Sobolev norms

q [e%¢)
19105) = ¥tooli st = 2 [ 1]
= [T P 19516 = Uil
q [ee) 9
+3 [heo)|

i=170

00 2

< ow [~ =E - ow),
0

S

2

9y (Us(s) — ‘Ifz,z,oo)’

Li(p,i) (gk,l,oo)

(92'\11271(8)‘

2
L421(p—i) (gk717oo)

by the definition of the weight function. The other parabolic norms are computed in exactly the
same way. O

Combining the previous two lemmas, we obtain the crucial fact that our ansatz is close to a
solution of (after pulling back by the diffeomorphism induced by gs) to Calabi flow with respect to
the parabolic Sobolev norms.

Corollary 5.6. Let A satisfy the Yang-Mills flow at time s = 2r/k - t, and wi1(s) = wi(h, Js) be
the resulting family of Kdhler forms on P(Es), so that @y 1(s) = gi(wk1(s)) s a family of Kdahler
forms on the fized complex manifold P(E). Then for all p,q, and € there is an estimate:

Proof. By Lemma [5.4] we have a pointwise expansion

2r 2r -
Scal(wg,1(s)) + ?@h(AwEFZS) — (Scal(wg1,00) + (k(bh(AWZFﬁm))“ < Ck32,
Wi, p,q,we(s) (9k,1,00)

2r o 2r o
Scal(wg,(s)) + ?CI)}L(AWEFAS) — (Scal(wg 1,00) + ?q)h(szFAoo))

= Z ki_l((\lfgl(t) — \Ifglpo) + (\I’{:'h,l(t) - \I]<I>h,l,oo) + (\IIL,l(t) - \I’L,l,oo)'
=2

By the previous Lemma we obtain the result.

Applying Lemmas and and Corollary gives Theorem for I = 1.

5.3. The Second order correction. In this subsection we will prove Theorem [5.1]in the case [ =
2. This is the main step in the induction. More specifically we will prove the following proposition.

Proposition 5.7. Fiz any S € [0,00]. There is a path n° € su(E), and one parameter families
of Kihler potentials ©(s(t)) € 7*C®(X), Z(nF) € C®(P(E)), Q(s(t)) € C®(P(E))L converging
smoothly to functions Oco,Z0, oo S0 that the path of Kdhler forms

(5.26) wk’g(s) = wkyl(s) + z’gJﬁJs@(s(t)) + kilingaJsE((S(t)) + k72i5t]sa]sﬂ(8(t))
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compatible with the holomorphic structure J; converges to a form wy 2 o (with corresponding metric
Gk.2,00) compatible with J.

Moreover, there exists a one parameter family of functions H(wy 2(s)), converging to a function
H(wg,2,00) such that the following properties hold.

Pointwise there is an equation:

Scal(wg2(s)) + H(wg2(s)) — (Scal(wg,2,00) + H(Wk2,00))
(527) = SEUEs) - W) )+ (W) () — v, )+ (wP(s) — ) ),
=3

where \I’(Zz’)l(s), ‘1’,(1,2271(8), and \Ilf)l(s) are smooth families of functions (each belonging to the respect-

ive summand of C*°(P(E)) ) converging in C*°(P(E)) to the smooth functions \II(EQ,)Z,OG ‘1151327!700, \Il(f,)l,oo'
We furthermore have an equality
1 [ Owg.a(s .=
(5.28) it (P2 nals) = 0,00, Hlenalo)),
which implies in particular that
0wy, 2 (s 5 N
’gi() = 10,0, H (@r2(s)),
for all s € [0, 5].
Equivalently we obtain a formal solution
0w _
(5.29) wgi(s) + ’L'aJaJSCCLl(&\)k’Q(S)) = O(k‘_3)
to Calabi flow on P(E) to order 3 in k=1, for all s € [0, S].
Finally, for all p,q and € we have
2 2
IUEHS) = )l ooy = OB,
2 2
(5.30) 18 () = U6 tocll ey = O,
2 2
1020 = Ol o) = O,
which implies an estimate
(5.31)  [|Scal(wk,2(s)) + H(wk,2(s)) — (Scal(wg,2,00) + H (Wg,2,00)) | < k=62,
W4,p,q,wg(5)(gk,l,oo)

The remainder of this subsection will consist of the proof of From the previous subsection
we may write
00y 1(s)
ot
The goal is to add Kéhler potentials to &y 1(s) in order to eliminate the first three terms. We
will handle the terms involving Wy 2(s), g, 2(s), and ¥ 2(s), in that order, by adding three new
potentials, one for each summand. Each time we add a potential, we first calculate the effect of the

+ i5J8JScal(@k71(s)) = ]{2725:(\11272(5) + \I’¢h72(5) + \IJL,Q(S)) + O(kig’).

change in the metric this induces on the scalar curvature, and see that in order to eliminate the
relevant term of order 2 in k™!, we must solve a linear parabolic equation of the type discussed in
the appendix. The key point is that when we add each potential, we will only change the right hand
side of the equation above at orders 3 and above in k~! by terms involving the added potentials.
The parabolic theory, together with the estimates obtained in the last subsection will then allow
us to obtain estimates on the potentials, which will in turn give us estimates on the O(k~3) terms
as well, as in the statement of Proposition [5.7}
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Proof. Step 1: Correcting ¥y 5.

We will start by eliminating Ux 2(s(¢)). To do so we will modify the metric wy; on X. Since
w1 (t) = w(h, Js) + kws;, modifying wys, by adding k~1idsdsO(w(t)) for some one parameter family
of functions O(w(t)) € C*°(X) is the same as modifying wy1(¢) by adding 7*(i0s0x.0(w(t))). Here

w(t) = 5.
So we obtain a new metric
Gal) = wia(s(0) w(t)
(5.32) = wm(s(t)) + W*(iégaz@(w(t))),

and to calculate the effect of this change on the scalar curvature we simply replace wy by wlz =
wys, + k71idx050(w(t))), in the expression obtained in the proof of Lemma [5.3| that is:

Scal(wy,1(s(t))) = Scal(wp(s(t)) +i02050(w)) = Scal(w(h, J;) + k(ws + k™ 1i0x050(w))
— Scal (wFS(IPH)) + k7 (=2r®a(Ay 15, 0, o0 i) + Seal(ws +i0.,,0,,0(w)))
(5.33) + Z k72 (Us(s) + W, 1(s) + U1 (5)) + O(K2).

Now we compute all the expressions in the above formula, beginning with Scal(ws + k~1i0x0s).
We have

Scal(ws + k105050 (w)) = Awg—ﬁ—k*lzﬁg@g@(w) (pwz;—i-k*ligg@g@(w))
o pw;;-&-k*ligzage(w) _ AWE (pwg+k71i52629(w))
wy, + k_ligzaz@(w) (1 + k‘*lAz@(w))

Below we will define ©(w) as the solution of a parabolic equation, and in particular it will be
bounded as w — 0o, so that for k sufficiently large we have |k~'Ax©O(w)| < 1. Therefore we have
a pointwise expansion of the form

SC(ZZ((UZ + k_1i5262@(w)) = ALUE (pw2+k—1i52629(w)) (Z(_l)ik_i (sz(_)(w))z> '

i=0
We also have
wy + k‘_ligzaze)(w)
wy
= i0x0slog(l+ k1A, O(w))

= i0x0x (i( 1) g~ l(Aw@())>

i=1 v

)

Psth—1idsds0w) — Pos = 1050z log(

Then we obtain

Scal(ws + k~1i0x050(w))

sz +Z'52 82@(11)) (pwz +i9%,05,0 (w) )

= Auy (M + 0505 <i( 1) g~ ZW)) i(—ni/ﬂ (AL O(w))’
=1 1=0
= Scal(ws) + k7 (A2, 0(w) — Scal(ws) duy O(w)) + O(k2)

(
= Secal(ws) + k™ 'D} DuyO(w) + O(k™?),
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Where we have used Lemma to conclude that
(A2,0(w) — Scal(ws)Auy O(w)) = (dScaluy)o(O(w)) = Dy Dy O(w).

since Scal(wy) is constant. For the moment the above expression is purely formal, but we will make
it precise in the sequel.
We may also compute

F5 1
A,r1is FS = As = A F5 —
wx+k 118282@(’11)) As wy, + kfllazaz(_)(w) s+ As 1 + ]{j_]‘ (18282@(’!1}))

wx

[ee]
= Ao FL, — K A FR, (BupOw)) + Dk A FYL (Aus O(w))").
i=2
Expanding the expression [5.33] we obtain
Scal(wy,1 (s(t)))
= Seal (wps(P"™1)) + k7! (Scal(ws) — 2r(®(Auy F3,))

572 (DL Duon O(w) + 2@ (A F ) Ay O () )

+ 3 KT (W) + Wa, a(s) + UL(s)).
=2

Remark 5.8. The two key points here are (1) that we have not changed the k~! term at all, so
that the new metric will still give an approximation to Calabi flow at order 1, and only slighly
modified the k=2 term by the expression

D Dus O(w)) + 2rAu O(w) Py (A g, F4,),

which will help us kill Uy 5(¢), and it is otherwise unchanged; and (2) the new O(k~3) term will
remain in the appropriate parabolic Sobolev space as we shall see below. For the time being, to
lighten the notation, we continue to denote these latter terms by Us ;(s), Vo, i1(s), V1 (s)), even
though stricitly speaking they have been modified. We will modify the notation later, after we have
we have constructed all of the required potentials.

Now we define O(w). There is a solution to the elliptic equation
(534) QZEQUJE@OO = _‘/I\/Z,Z,ooa

(where we will abuse notation here and leave out the pullback symbol, and where @2’2700 denotes
the difference with the mean value), since by definition

/ @272,00 =0,
2

—\Tlgg,oo 1 ker ”}3232@@ ,

and therefore

since

ker 7, D, =R
We take ©(w) to be the solution of the linear parabolic initial value problem

90 (w)
ow

(5.35) + D5, D O(w) = —(U52(s) — Us2.00),

9(0) = —O,
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the longtime existence of which is provided by Theorem which we may apply using the facts
that D}, D, is a semi-defiinite self adjoint operator whose kernel (which again is C) , is orthogonal
to @2,2(3) — @2’2500 for all s (and so all w) and that by Lemma we also have

@2,2(8) - @2,2,00 € Wapgw. (s (9k1.00)-

Now we define

(5.36) O(w) = O(w) + O,
which then satisfies the initial value equation

00 (w . ~
(5.37) 850 )4 005 DuwsO(w) = —Us o(s).

©0)=0
We remark here that by the regularity theory for parabolic equations
O(w) = O(w) — Ou
is also in the parabolic space Wy 11 .. (s)(9k.1.00) and satisfies the parabolic estimate

‘ ’@(w) - @00‘ ’W4,p+1,q,w5(s) (Gk.1.00)

c <H®OO||L2 (gh1oe) T ‘ —(Usya(s) — ‘T’E,Q,OO)H

4p+2

(5.38)

IN

W4,p,q,w5(s) (91&1.00))
< CkY?,

again by Lemma [5.5
We also define

(5.39) H(why(s(t)) = k™ (2r@p(Auy Fa,)) = k72 (D} D O(w) + Uz (s))
Then note that one has the analogue of equation [5.28] namely:
0,0, (H(wh(s(1)))
=k N(2ri050; (Bn(AunFa,))) — k210,05 (Dl DO (w) + Usa(s))

(5.40) = zrk—l(&”’“g(j(m + Ly, (wr1(s5(2))) + k:—za(z} (z‘ézag@(w))
= ork~! (W + Ly, (wk,1(s(t)) + % (iazaz@(w)>)
= ork~! (W + Ly, (w;c,l(s(t))> )

where we have used the fact that
Ly, (igzag@(w)) = i0x 0y, (Ly, (O(w))) =0,

because

d . __
Ly, (Ow)) = V. (O(w)) = -(gs 09, He=s) (B(w))
d IO
B jg(@(w) ©Gc©9s 1’§:S) = 07
since ©(w) o g. o g; ! is constant, because ©(w) is constant on the fibres of P(E) and g. o g;*
preserves the fibres by definition.
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Then formally we obtain
Scal(wy,1(5(t))) + H(wg 1 (s(t))
(5.41) = Scal (wFs(]P)T 1)) + k71 Scal (wy)
+ k7 (QTA sOW) P (Aus F3,) + Pa, 2(t) + V1 (1))
+ Z E (Wsa(s) + W, a(s) + U1 i(s)),

which by equation gives an initial version of equation [5.29] namely the equation:

0wy 4 (s(t =
k’lai()) +10,50Scal (B, 1 (s(t)))

_ W + 100 Scal (g5 (wy, 1 (s(1))))

= oot (P 00 ) 3 (0.0 Sl (00)
= 2 (19,05, (H(wh1 (s() + Seal(w} 1 (s(1))) )
= k%005 ((2r Ay (W) @h, (A Fi) + Wa, o(s) + Wi a(s))) + Ok ™).
Notice that taking O as above, and defining
w;C,LOO = Wk 1,00 T 105056000,
and
H(Wpioo) = = H (W)
(5.42) = 27k~ (O}, (A FS))
then by the elliptic analogue of exactly the same argument above, we have an expansion
Scal (w;§717oo) +H (w;ﬁlm)
(5.43) = Scal (wps(}P’r_l)> + k71 Scal (wy)
+ T 2rAusO(w)@h(Awn Fi) + Ua, 2,00 + Vi 2.00)
+Zk‘ (Vs t00 + Yo, 100 + Wi 100)s

and subtracting equation.41] from equation gives a preliminary version of equation
namely:

Seal (i (s(0))) + H(wpa (s(0)) = (Seal (Who0) + H (@100

(5.44) = k7 2(2rAuOw)®), (Apy Fa,) — 2rAusOuc®h (Awn Fa))
+k? ((‘1’d>h 1(s) — ‘1’q>h,z,oo) + (P1(8) = V1 00))
+ Z E(Us(s) = Usioo) + (Ua, 1(8) — Ua, 100) + (U1 a(8) — ¥ 1 00))

Step 2: Correcting Vg, 2(5)
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We will now eliminate the term Wg, 2(s). This will be done altering the metric h on E. Namely
we will define the metric

(5.45) I, = h+ k" h-n(s)

where n(s) € iu(E, h) is a 1-parameter family of h self-adjoint endomorphisms of E. Of course the
gauge transformations g; ! act on h n(s) to give

hﬁ(s) = _1 hﬂ()_h + k- 1 _1 - (h-n(s))

(546) - hs + k™ lhs : 7757
where 7(s) = g; ' 0 1(s) © gs.
We define

1" 1

wea () = wpi(s(t), w(t)) = wlhy, )7J ) + kws 4 105050 (w)

1"

Dpat) = g (wia(s),w(t) = wlh,, J) + kws + 0505 (O(w)) .

Notice that we may also write:

w1 (sM)([o]) = w;cyl(s(t))([v])+iajsajslog(m)

= W;CJ(S(t))([U]) +1i0,07, log(1 + k—llm)

= wia(s())([v]) +1i0.,05, log(1 + k™' @y (=ins([v]))) ,
so that

1"

wra(s(t) = wpi(s(t)) + 05,0, log(1+ k™' (—in,))

= wﬁc,l(S(t))Jri@Js@JS( Z 1)+ )(¢h(—ins))i>

i=1

= w,;71(8(t))+iajsajs< k— 1§: ‘I)h ”78)))

=1
Wi (5(8) +10.,0,, (K2(m.))

where we define

o

(5.47) E(ns) = — D (kU1 (@ (iny))"

i=1
Therefore changing the metric to h,, is equivalent to adding the two form defined by the potential

5(773)-

To see how to eliminate the term Vg, o, we will begin by calculating expressions for

0w,
100 o Seal (21 (5(0)).

because the calculations are more straightforward in the framework of the metrics @;71(5(0) rather
than wgvl(s(t)).
By Lemma [4.9 we have that

o0a” (s o5 (s Ow(h~,J
k,g(t(t» ol <kvl((t>)>_rk; 1<(ag)+zaJ3J@( ))
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Ow(hy, J) 00y 1(5()  Ow(hs, J)
_ -1 Ms k’,l o Sy
(5.48) =k < 0s + 0s Os
0y, 1 (s(1)) Ly [(Ow(hs T) Ow(hs, J)
B T—i_rk 0s B 0s

0wy, (s(t) ). | Ohes, 1 0h
T+r1{: 10505 he zhﬁs 88 — &y, (zhs 85) .

Similarly, according to equation after replacing h by h,, and pulling back by g,, we have

Scal (wk 1(s (t))) = Secal (wpg(]P’T_l)) + k1 <<Scal(wz) - 2T(q)h?s (szic%s)>)
(D DunO(w) + 2r A O(w) P (Mg FiL ) + Una(t) + T, 2(t) + W1 (1))

s

+Z E (Wsi(s) + Wa, a(s) + W ia(s)).

s

In order to obtain a more precise expression for each of these functions in terms of ®j_ (Aus, Fh,),
we must calculate the quantities

o~

Dy <ihA1 "3> and @y (Auy Fi ).
s TNs 8 s s

s
8}1/\
We have by definition of zhA e
_, Oh~ . ., Oh~ Bh/\
8]1" ( "1 3nsvav) Zh/\ (U7h"1 3% ) (’U ’U)
h=t = = 3. ns 9% — /1 ns 0s _ J 1t i (v,0)
h, (Z 7 Os )W he (v,0) he (v,0) he (0,0)

i Ohs (v,v) + k1 'mhs’ﬁs) (v,v)
_ 85
DR RO F = XX X

R ) + RN @) v >+klz‘hs<v,%%v>( +k_1h(ﬁs(v)7v)>_l
hs(v,v)

’l: —1 8hsv v -
—1}, (i1 Ohs o fs(v 1 87’5 v -
+ﬁk hs(ihg 19 o 7s(v), v) + k™ hs (152 (v), )(1+k_1<1>h5 (—iﬁs)) 1([1)])

ha(v,0)
. (ih_18h> D+ 2ok (7)) (1))

it (3, (m;%’foﬁs)qvnwhs (152 e )Zk (@1, (i7))'([0]).

Now since hg follows the HYM flow, namely
ihy '0shs = 2(AuFh, — ip(E)IdEg),

in particular
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(5.49) = 20, (Aus Fr.) +2u(E) + k71 @y, (z %77;>

+k71 (2@, (Mg Fn, 0 1s) + 2@, (Aws, Fr,) - @, (i) + O(k™2).

In a similar way we obtain

hﬁs (Aws, 7 v,0) hs(Aws, Fy v, v) + k= hg(fjs o Aoy FY v, v)
Py, RusFi ) (D) = V=1 he (vv) v-1 hs(v,v) + k= The(7s(v), v)
= (o (AseFi ) (@D + 570, (70 A ) () oK (@, (i0)) (o],

so that
O (Awy Fy )
Ns s

(5.50) = P, (sz Fp ) s (cphs (ﬁs o A Y. ) + (AWEF,‘; ) By, (z’ﬁs)) L Ok2).
Ns Ns Ns
By the construction of the Chern connection Ay = (¢, hﬁs)’ we have
Ns
Ap. =0¢ +h=t 0 dg« o h~,
ns s Ns
where we regard hﬁg as a complex anti-linear map
hﬁs B — E*,
and for a section o of F
(15 0 9 015, ) () = 15! (9 (15, ()
We then have
Ap. —Ap, = =t 00g« 0o h~ — h;l 0 0g« o hg
Ns ’ Ns Ms
— h;]tsl o) 85* o h;’]\s — 8(57}13)
Therefore

—1 A Y
Fa, = Fh/n} = Fp, + dAfs"d(E) (hﬁs 0 Jgx o hy — 8(57’13))

nNs
_ 2
= Fn, + 9pnae) (hn:sl 0 Qg o hp — 8(5,hs)) :
since there are no forms of degree (2,0) or (0,2).
Now we have
hal oD o h,
= (hs + k_lhs © ﬁs)_l © 58* ohs+ k_l(hs + k_lhs © ﬁs)_l © 55* o hsofjs
= <Z(—1)ik_i(ﬁs)i> ohytodg-ohs+ k! (Z(—l)ik‘_i(ﬁs)i> o hy! o dgx o hy oy
=0 =0
= h;l 055* ohs+ k1 (8(£,h) o 778 —nNso a(c‘f,h))

o0

+ (;(ﬁs) + kT - 1) 0dgn +k o (Z(—l)ik_i(ﬁs)i> 0 Jg,h) © Ms
=1

[1
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o0

= Oepy+k! (5(End(5) he)Tls ) + k! (Z(—l)ik‘_i(ﬁs)i) © O(End(€),hs)Ts

=1
= Oepy+hk (8(End(8),hs)ﬁs) +O(k™?).

Therefore we obtain

Fu, = Fp +k? (gEnd( YO(End(&),hs) s ) + OBnd(p) (k_l ((Z(l)zkﬂ(ﬁs)z) o a(End(E),hS)ﬁs>
UE i=1
(5.51) = Fy, + k! (gEnd(E)a(End(é‘),hs)ﬁs) +O(k™?),
and
(5.52) AosFa, = ANog Fr, — k= (ZA End(€) (775)> + (’)(k_Q).
s }LS

Finally we get
L7 (AwEFh?) = Oy, (A Fp,) — k! (@hs (iAafnd(@ (ﬁs)>>
(5.53) +ETH (@, (Aug Fr,) P, (i71s) + P, (s © Dy Fr,)) + O(K72).

At a formal level we therefore get:

W +id50; (Scal (1,(s(1))))

aaj}cl(‘g@)) —1 . _16h;7\5 . _18h5
= 5 +rk (I)h?s Zhﬁs s |~ Dy, (zhs s )

- (27”(@;,/\ (Ms B )))

UE]

Ns

(-
(
+i0 507 (kZ (‘Pz,z(t) + Ve, 2(t) + WLQ(t)))

kil(\IlE’lCS) + \Ihph/\ 71(8) + qu_J(S)))
1=3 e

2 0s
—'l-gjaj (k 1 QT((I)hS (AwEFhs))) + Z.EJ(C)J (kiz(gzzgwEG(w)) + 2TAwZ9(w)(I)hS (AwEFhs)))

k2 (Uga(t )+ Vs, ot )+\I/J_,2(t)>)

_ 1.07s
= —— 4 k_22ri6J8J ((I)hs (szFhS) . <I)h (7,?73) + (I)hs (Anghs [¢] 773) + (I)hs ( ) L ))

+i0;0;

S

(
+i070, < kT (Us(s) + Uo, u(s) + WL,Z(S)))
=

+k™22ri0 50, (<I>hs (zA End(€) (ﬁs)))

hs
—k722ri0,0; (®n, (Mg Fr,) @, (i)s) + Pn, (s © Ay Fi,)) + O(k?)

Oy (s(t)) , 107, .
- k’la(t()) + 0,0 Scal (1 (s(0))) + K220 (0, (i (550 + By @) + (Ao Pl )

+O(k73)
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= k29,0, ((2me@(w)q>h5 (Aus Fi,) + o, _o(t) + xpm(t)))

_ 1 07, ) A .
Fh22ri0,0, (cphs (z (2 AL (ns)> + [AwEFhs,nS])> + Ok,
hs

Now recall that

1" 1"

Wr1(s(1)) = g5 (wy,1 (s(1)))-

By Lemma [4.12| we obtain
Ow, (s y — "
2rk™1 (k(laiof)) + Ly, (wkjl(s(t))>> +10,07, (Scal (wm(s(t))))
= k%0550, ((2rDuy O(w) (A, Fa,) + Pa, 2(s(5) + U1 a(s(t)))

9n A v (107 1k A _
722005, (@ (1007 (552 + Bppraer@)) + (07 (AwFhsi)) ) +O0).

Using the formulae

s = 95! 0150 g5 NugFh, = 95" 0 Mg Fa, 0 gs
and Equation [3.11] one easily calculates that
G (352) = i+ 5l AusFa)
(95 1)*Aafsnd<s>(7ls) = Agpnace (0s),
and (g5 )" ([Awg Fu,» 7)) = [Mwg Fa,,ns),

so that
. 1 8778 —1\* =~
i(gs ") +A End<s>(ns) + (95 )" ([Awg Fhy» 7))

2 9s
10ns
= (2 an +A End(fs (n5)> + i[szFAsanSL

and we obtain

k1 (W Ly, (w;;,1<s<t>>)> + 05,03, (Seal (w1 (5(1))))

_ e

= k‘_z (iajsajs (T‘I’h ( 877 + 2IA End(ﬁs)(ns) —+ ZAWEG( ) AngAs + [szFAsanS] =+ &(S))))
+72 (107,00, % 1 2((1))) + O(k™2),

where a(s) is a family of endomorphisms such that

(5.54) Dy (ra(s)) = Vo, 2(s(t))-

Recall the Bochner-Kodaira-Nakano identity, which applied to the induced connections AEnd( )

on End(FE), gives an equality
_ : EndE
AASEndE (?75) = 2Aafnd(£s) (775) +1 |:FA57 Aw } (7]5)

= 2A8End(£s) (ns) — (iAgndEFAS) (75)
h
— QAafnd(Ss) (ns) —1 [AwFAmT/S] )

or
i gpnar (n5) = 218 pnaen) (0) + [AwFa, 1
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and so this last quantity is equal to
= . (Ons _
= <zaJsaJsr¢>h (z (51 + A gpoa (m)) 420 0(w) - Auy Fa, + a(s)) + q/m(s(t)))) Lo,

We now define the one parameter family ns. We note that since by Theorem the limiting
holomorphic bundle
oo 2 Gr(€) = @ Q;
splits as a direct sum of of stable bundles );, by Lemma an element of ker A AEndE 18 of the
form

> Cioold,
J

and so if
078 (Taoo) = ‘I’<I>h,2,007
then we may write

— (2803000 Mg Fa, + o) = Boo + Y ¢jocldo;,
J
where

ﬂoo 1 ker AAgondE,
where here | means L?(gs) orthogonal. Since the bundle £, which is isomorphic to & for all s, is
simple, we

ker A ypnap C ker A ypnap
for all s, because if ¢ = ¢ for all j, then
Y eocldo, = cooldp

J

where we use the fact that, as smooth vector bundles

Gr(€) ~ E.
Therefore we also have
B L ker AAsEndE

for all s. Then for each s there is a solution G(x) to the elliptic equation
(5.55) A yonars (G5(iBso)) = ifoo
where G; is the Green’s operator for A ypnas.

We may similarly write

—(280uyO(w) - Aug Fa. + a(s)) = B(s) + 3 ¢;(s)Ido,
J
where
> _ci(s)Idg, = prier A, prap (—(28wsO(W) - Awg Fa, + als)),
i oo
B(s) L ker AAg‘ondE,

and ¢;(s) is a constant for each i and s.

Note that we may solve the system of ordinary differential equations

dn, _
(5.56) i —chj(s)Ide
j

ﬁO - 07
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for all time. Now fix a large positive number S and consider the cutoff function gg(s) such that
gs = 1 on the interval [0,.5] and gs = 0 on [2S, c0). By construction then

gS(S) "1 € Wp,q,wg(s) (gEa h’)7

and still solves equation on the interval [0, S].
Then we define 15 to be the solution to the initial value equation

87]3 + AAEndE (7]5) = _Z(/B(S) - 500) + 0s (Gs(lﬂoo)) - gg(s) : AAS (ﬁs)

(5.57) L
no = Go (ifx0)

which we obtain from Theorem [Z.10]
We briefly explain why this theorem applies. By construction we have

(,8(8) - 500) 1 ker AASEndE, ker AAOEOndE
for all s. Similarly, since
Gs(ifs) L ker AASEndE , ker AA)OEOndE

for all s by construction, for the tangent vectors we also have
05 (G5(ifBu0)) L ker AASEndE , ker AAOEOndE

for all s, since for example, if o is any element of ker A AEndE

<(G8(7//Boo)) ’0>L2(gz) =0
and so
0=2 (“Gs(ww)) ’U>L2(gz)) = ((0sGs(iB)) » ) 2 (g, -

Since gg(s) is 0 for s sufficiently large, the right hand side of our equation is therefore orthogonal
to the kernels for large s.

Moreover, since by the proof of Lemma [4.9| W, 2(5(t)) = Yo, 2,00, smoothly at a rate of % and
all time derivatives of Wg, 2(s(t)) converge to zero at the same rate, by Lemma a(s) = ax
smoothly at a rate of ﬁ, and all time derivatives «(s) converge to zero at the same rate. Similarly

1805 O(W) - Mg Fa, = iy Ooo * A Fitoe [l o g 1)
= HAwE@(w) . (AUJEFAS - szFAoo) + sz(@(w) - @00) ’ AWEFAO@ ||Cm(92:h)

C (s Fa, = An Parcllom gy + 1B (O(w) = 00l o g )
< L

NG

for all m, for all sufficiently large ¢, and in the same way

for all m and 57 > 1 for all sufficiently large s.
Then B(s) +3_; ¢j(s)Idg; may be estimated in this way as well, and by the continuity of the or-

IN

C
<

0B ®0) A Fa, | oy < Vs

thogonal projection operator, we have 3(s) — o smoothly at a rate of %7 and all time derivatives
of B(s) converge to zero at the same rate. Therefore we have

i (5(8) - /800) € W4,p,q,ws(s) (QE, h)

Note that projecting onto the kernel, we we also obtain in particular that in fact

- (2Awg@oo : AwEFAOO + O4c>o) = 600 + CooIdE7
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for some constant ¢, since ¢(t)Idg must converge to cooldpg.
Furthermore, by the Bochner-Kodaira -Nakano identity we have:
AASEndE - AAOEondE
= 20Ny Opna(e,)O(EndE)n) — 210 ws OBnd(e.)O(End(e.) )
+i([Aw2FAoov _] - [szFAs7 _])
(5.58) = 2iMuy (Opna(e) + 9 OBnaen)n) T 05°) = 2iMus0pna(e) O End(e) )
+i([Aw2FAm - AwEFAs7 _]
= 2iAy (gEnd(Soo) oal’ +adlo O(End(Ese),h) T adt A ai’o,)
+Z([AW2 FAoo - AWE FAS’ _]
0,1

S
the form

1,0

and ag

where a converge smoothly to zero at a rate of 1/y/s. We therefore obtain bounds of
C

< —
‘ Cm(gs,h) — /s

for all m and j and all sufficiently large ¢. Since we have

07 (Dpnar — A gpnac ) H

AASEndE oGy =Ggo0 AAJS‘EME = Id(kerAAEndE)L’

and since A AEndp converges to A AEndE, We also have Gy — G, smoothly, and all time derivatives
go to zero at a rate of 1/ V/t. Moreover

G = Goo = Goo 0 (A s — A gpnaz ) 0 G,

| <
Cm(gz,h) o \/g

for all m and j and all sufficiently large ¢. In particular we obtain

88 (GS(ZﬁOO)) € W4,p,q,w5(s) (g& h)

Therefore since gg(s) - Aa,(7,) is 0 for large s, the result applies.

so we obtain a bound

01 (G~ Goo)

Now we may define 75 by
(5.59) ns = 1s + Gs(—ifo) + gs(8) - s,
which by definition then satisfies the equation

ons

(5.60) o

+ AASEndE(T]S) = —Zﬂ(S) + 888 (QS(S) ﬁs) ,

N = 0.
Notice that on the interval [0,S], the right hand side of this equation is exactly

i (2005, O(w) Ay Fa, + a(s)) .

Remark 5.9. We remark that we should really write 1Y for 7, since we have really constructed a
one parameter family of paths, with each path depending on our choice of cut-off function. However,
here and in the sequel we will drop this piece of notation. Note also that the limit of the 77;,9 at
infinity is independent of S, since the cut-off function vanish for sufficiently large s.
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Moreover, by the parabolic Sobolev theory we obtain an estimate of the form

HﬁsHW4,p+1,q,ws(S)(92’h)
H’)’IS — Gs(_Z/BOO) - gS(S> . ﬁSHW47p+17q7w5(s)(gE’h)

< C |’G0<iﬂoo)‘|Lip+2(927h)
+C ||'L(6(5) - Boo) + 05 (GS(ZBOO)) - 95(8) ’ AAS (ﬁs) ||W4,p,q,w5(s)(927h)

= O(1).
so that if we write 700 = Goo(—i80), we have
llms — 7700’|W4,,,+1,q,w5(5)(gz,h)
= Ins = Gs(=ifoo) + Gs(=ifoc) = GooliBoc) +95(8) s = 95(8)  Tollw, 11 0 o) (gh)
(5-61) < N7sllw, .1 g ooy T 1Gs(=i800) = Goo(=iBoo)llw, .1 oo (as)
+1950) Tsllw, sy ooy amh)
= 0Q).
Formally, on the interval [0, S] we obtain:

k! (W +Ly, (w;;,1<s<t>>)> + 105,05, (Seal (w1 (s(0)))

(5:62) = k72 (10550, (r®p (i (i (280, O(w) Ay Fa, + (s))) + 280, 0(w)Au Fa, + a(5)))))
+k7%0,5,05,9 1 2(s(t)) + O(k™®)
= k72 (0,059 L o(s(1))) + Ok,
Pulling back by gs again, so we get an analogue of equation

iy (s(1))
ot
for s € [0,S]. Then we have formally eliminated Wg, 2(s(t)) (at least on this interval, but again,

(5.63) + 10,0, Seal (D1(s(t))) = k72 (10,0, L a(s(1)) ) + O(k™),

note that the interval is arbitrary).
Now we define

H(wpi(s(t) = H(wp(s(t)) = k7> Wa, 2(s(t)) + 27k~ (@1, (Auy Fa,) @, (ins))
—rk~2 ((I)h (iAASEndE (775) -+ 2Aw29(w) . AngAS — 2Aw2FAs o 775))
(5.64) +2rk ™ By (A Fa,) (i(—l)ik‘i(% (m))>

1=2

k72, (z‘a;s + 2005 Fa, o ns)) (i(—l)iki(q’h (“’8”) ‘

$ i=1

8/\//
Pulling back the formula |5.48| for %S(t)) by (gs)~! and also using equation [5.49 as well as

equation one may check that we obtain an analogue of equation namely for s € [0, S]:

i (8”’“;28“)) +Ly, (w,’;,1<s<t>>)>

(5.65) = 0,05, H(wyg(s(1)).
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By taking t to infinity, and noting that by the parabolic theory we have C'*° convergence 15 — 7o,
with 7. as defined above, we obtain a fixed Kéhler metric

"

(5.66) Whtee = Whiee + 10000 (K2 (0,))
= w (hnoc7 Joo) + kws, + Z@Jooajoo@oo

on P(Ey).
We analogously define
H(Wpio0) = H(Wkioo) =k Ve, 200 + 20k~ (Ph (Aug Far.) @ (i)

—7“]6_2 (‘I’h (iAAOEOndE (7700) -+ QAWE@OO . szFAoo — 2AWEFA00 o 7700)>

(5.67) +2rk Dy (A Fa) (Z(u%—i(@h (moo)i)>
=2
+k~ Tq)h (2Aw2FA o 7]00 (Z (‘I’h (27700) )) .
=1

Note that by definition, we have
iAAOEOnd(E) (7]00) = Booa

and therefore we may also write
1" 1 kil 2
(5.68) H(wpo00) =2rk™' @y | Aug Fi — - > cjocldg, | + Ok2).
J

The analogue of the expansion for Scal(w;?lm) using (the analogue of) formula is
Scal(wyy ) = Scal(wps(P™™)) + k™ (Seal(ws) — 2r®p (Mg Fa.,))
R (r (38 i) () + 2805000 - A Py ) + Ty 2.00 + W 2.0
=20k ™% (@, (100 © Ay Fare) + @ (Awg Fa) - P (in00)) + O(k ™)
= Scal(wps(P™™) 4+ k7! (Scal(ws) — 2r®y, (Awy Fa.,))
+7Ek 72 (@h (—Awg Far © o0 — Moo © Mg Fa, + Coo) + T 1 2.00)
Ph (A Fany) - @ (inoo) + O(K),
so that
Scal(wg,lm) + H (w£71,m>
= Scal(wps(P"™ 1) + k™! (Scal(ws)) + k2W ] 5 o
+O(k™3).
Notice that by equations [5.65] [5.62] [5.48] and [5.49] we have:
Seal (wy,1(s(1)) ) + H(wy1(s(2))
= Secal (wFS(IP’Tfl)) + k™1 Scal (wy)

+ k(T o(s +Zk (Usi(s) + Wa, 1(s) + Wi (s)),

so that we obtain an analogue of equation @ namely:

Scal (wg71(s(t))) + H(wg71(s(t)) - (Scal (w,';lpo) + H(w};,lm))
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(5.69) = Ek2(¥, 2( ) — \I'u o)

+ Z E (Us(s) = Usio0) + (Wa, 1(5) — Y, 100) + (W1 i(s) = V1 1 00)),
where we again note that for the moment we have kept the same notation for the terms of higher
order, even though they have been modified.

Step 3: Correcting ¥ 5(s) The final step is to correct ¥ o(s). We will do this by adding a
function

Q(s(t) == g5 (Q2(s(2)))
for a 1-parameter family of functions Q(s(t)) € C*°(P(FE)), where, as usual, this family will be
determined later by solving a linear parabolic equation. We may finally define

(5.70) wra(s(t) = w(s(t)) + k%005 (Qs(t)))

(5.71) Gra(s(t) = Dya(s(t) + k20,0, (s(1))) -

We will begin by calculating the scalar curvature of @y 2(t). We have
Seal @r2(8)) = Agy 5(5()PBea(s(0)

O L (s(0)+k=2i0505 (s(1)) P27, | (s())+k~2i0,05 (s (1))

1"

(pag,l(s(t))M%éJaJ (ﬁ(s(t)))) A (%,1(5(75)) + k210,04 (ﬁ(s(t))))r_1
(@1 (s(8) + k~2i0,0, (Q(s(1)) ) ) '

Now as in previous calculations we may write

P (s(t))+h=2i8,0, ((s(0)

G (s(2)) + k20,0, (Q(s(t))))r)
(@ 1(s)

= p@;;l(s(t)) + Z.Bjaj log (

S (s)) " A (10505 (Hs1)))’

= pA// ((t))—i—zé[]a]log 1+k~ 22( >k2_2i(

=1 (@gl(s(t))>
—9.5 A 4
= pag,l(s(t)) +k ZZajajAagi(s(t))Q(S(t)) + O(k‘ )
Similarly, for any path of r-forms «(s) we have
a(s)

(@2,1( (1) + k=2i0;0; ( )
a(s)

(Qg,l(s(t))) 14 k2 Z k2—2i Ggl(s(t)) (iéJaJT(ﬁ(S(t))))1

(@h 1 (1))
= 7@(8) —|— k— AA// Q —|— O(k )
~ a(s(1)
(Wk:,l(s(t)))

Therefore we obtain

Scal (W 2(s(t)))
= Seal(@y,4(s(t)) + k~2%0;0,0(s(t))
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1"

(,@/J sy T k—%éjajA% (s 2(s(D) + O(k—4)> A (@kyl(s(t)) + k—%éja,ﬁ(s(t))r
' (@ (s(t)) + k2i0;0,0(s(t))
(pa;l(s(t)) + k—%ajaJAagJ(S(t))ﬁ(s(t))) A (@;;1(3(75)))’"_1
(@1 (s(8) + k~2i0;0,0(5(t))
20 = Doz o (@11 () nid,0(s(0)
(@11 (s(8)) + k=2i0;0,0(s(t))

— Seal (@, (s())) + k2 (A%;ﬁ,’l(s(t))ﬁ( (1)) — Seal (44(s(1)) (A Zl(s(t))Q(s(t))>>
<P@” (s(t)) (@;71(5(75)))7"—2
(621(5@)))

— Seal (74 (s(t))) + (dwl( o Seal (ﬁ(s(t)))) O,

= r

(5.72) + +O(k™)

A iD;0 Jﬁ(s(t))
+k72r(r -1)

T

where in the last line we have used Lemma
Notice that d~» (s( t))S cal (Q(s(t))) depends on k, so we will need to calculate this more explicitly
k,1

to see what the k=2 term of this expansion is. We begin by expanding the Laplacian. We have

Agr (s(1)) (Q(S(t))) = AA” (ZaJa] (3( ))))

i050; ( s(t ) (wkl )
(@1 ()

10,05 (Qs(®)) A (w(hs, J) + 100050 (w) + k~1i0,0,2(7, ) )7
(wi(ho, ) + 05050 (w) + k~1i0,0,2(0,) )"

(9,01 (1)), ,
(Pp, (—Awg Fr,) + Auy O(w) + kT AR E(7s) + k)ws

N (i, (Q(s(t))))w A (wrs(ha) + &1 (iéjanl(ﬁs))vv)T‘Q
(wrs(he) + k1 (i0,0,200)) )
= Ay (As) +OG.

= r

(5.73)

+(r —

We also have

PO (s() = Porals)
— r—1
(B, (~AusFh,) + Auy O(w) + K A E(0) + K)ws A (r = 1) (wrs(hs) + k~1i0,0,5(1) )
(T - 1) (wFS(hs))T_l ( ( A ) + k)WE

+i0;0; log

_ —1
= Pouasy TOKRT)
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so that in the same way

P3 (s()) @gl(s(t))”_? Ni0;0; (Q(s(t)))

rr— 1) - -
(Qk,l(s(t»)
L gy s+ AR + Seiln)) o) 1 GO 2 A 0,0, ()
(@k,l(s(t)D
.a AN _ .a —_~ r—3
L oy s 002 (OO, rsth) 47 (D22 ) gy
(wFs(hs) + k-1 (iaJ&]E(ﬁS))W)
2 (Bs() A orsk) ™ -

(wrs(hs) ™
= (1 =28, (As(t) + OG).
Then finally we obtain
Seal (@y2(s(t)))
= Scal <@;;1(s(t))> + k72 (
(

| (
(

We will write
(5.74) Dy D) (As(1))
= A% (Ds())) — 2ray (O(s(1))
so that
(5.75) Seal (@r,2(5(t))) = Seal (@1 (s(t)) + k72D D vy (Us®)) + OK).

We observe that for any holmorphic structure on E giving rise to a vertical bundle V| and any
hermitian metric on £; D, ;D (v p) is an operator C*(P(E)) — C*(P(E)) which restricts to each
fibre to be the operator C*(P(E;)) — C*(P(E,)) given by the Lichnerowicz operator ®3®, on
the fibre associated to the Fubini-Study metric. That is,

Dy D wn) (D)pE,) = D3Da(Plpp,,)-
It is also easy to see using the fact that g} (wps(hs, J)) = wrs(h, Js) that

D n)D W n) (95 () = G5 (D(y, D wa,n) (2s))-

The fact that Df), ;D (v, n) Is also self-adjoint with respect to wi,1(s(t)) follows from the self-

2

adjointness of Ay, 1,y and A%VS h) which folllows from the self-adjointness of Awkyl(s(t)) and Awk L(5(8)

and the equalities
Awk,l(s(t)) = Aw.n+ O(kil)
2 2 1
ALty = Al TOET),
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(which follow from the exact same argument as for the metric @271(3@)), by simply taking k to

infinity.
As usual we may write
D) = C50) = SRS
= 2 (L 00 + o0
= 2k (L, () + (thS)
At a formal level, we therefore obtain for all s € [0, S]:
P20 39,0, (Seal (@ (s(1))

oW, 4 (s(t _ _ o
= Pt 00 (Seat @xa(s(0) + k%0505 ( Sgi(00s)
+k 7200507030 n ) D v ((2))) + Ok )
I o .
= k2,005 (V1a() + 50 + Dy, Dy (@) )

+k7%10505(95(Lv, (2s)) + O(k2).
By the definition of 25 below, we will see that 2, — €0, smoothly as well, so that
2rk %190 (35 (Lv.(Qs)) = O(k™7)

and therefore also

0@y 2(s(t))
ot

Ao 0 « -
= k*%&]&](gs <\I’J_72(S) + Qs + @(V&h)@(vmh)(ﬂs))) + O(k 3)

(5.76) +i9;0; (Scal (Gx2(s(1))))

ot

for all s € [0, 5].
Given any endomorphism F' € su(FE), recall that the restriction of the vector field X to each
fibre P(E,) is holomorphic, and in fact

XrlpE,) = VOr(F)lpE,):

essentially by definition. In other words ®;(F")|p(g,) is a holomorphy potential, and therefore we
obtain in particular that

D D) (Pn(F))|p(E,) = D20(Pn(F)lpz,)) =0

for all z, and therefore ®p,(F) € ker(D7y, ;D (v, p)) for all s, or @p(su(E)) C ker(Dfy, 1D (v, h))-
Another way to see this is that since the Ricci curvature of the Fubini-Study metric on P(E,) is

Ric(wpg) = ((r—1) + 1) wrs = rwrs
(and in particular Scal(wps) is constant), so that we have for any function ¢
D500(Dlos,) = AR(Dlog,,) + r{wrs, 100(y )
= A5(0lys,) — A5,

so a smooth eigenfunction of Az is in the kernel of D7D, exactly when it is in the first eigenspace,
that is, when it corresponds to the eigenvalue r. In otherwords, the smooth eigenfunctions of Ag
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which are in the kernel of ©;9, are exactly the functions which are restrictions of functions in
@, (su(E)). Since, by the spectral theorem, any L? function on P(E,) has an orthonomal expansion
in terms of the eigenfunctions of Az, it follows that

(5.77) ker(@?‘vs,h)Q(V&h)) =71(C*(X)) ® Op(su(E)),
for all s, and in fact this is true for any holomorphic structure, so in particular we also have
(5.78) ker(D(y, D e ,n)) = 7 (C(X)) & Pp(su(E)).

By definition, the space C;°(P(E)), consists of functions which are fibrewise L? orthogonal with
respect to the Fubini-Study metric to the space on the right hand side of the above equality. Then
since D7y, ;D (v, p) Is self-adjoint with respect to wi1(s(t)) (and Dy 1)D(Va,h) With respect to
Wk 1,00, the decomposition
Co(P(E) = ker(Diy, mDw,n) & Cp (P(E))L

= ker(D(y_ D van) © Cp (P(E)) L

= 1 (CF(X)) @ u(su(E)) ® CpF (P(E)) L
is orthogonal with respect to the L?(gx1(s(t))) inner product for all s and with respect to the
L*(gk.1,00) inner product.

In particular, for every s, ¥, 2 o is L?(gk.1,00) orthogonal to ker(@?vs h)CD(VS’h)), so that we may
solve the elliptic equation

(5.79) D, P (Gs (Y1200)) = Vi,
where G is the Green’s operator for D7), Dy, n)- Note that W 9(s) is also L?(g 1,00) orthogonal
to ker(@’{vs h)CD(VS’h)), for every s so that
— (\I’J_’Q(S) — \IIJ_’Q’OO) J_L2(gk,1,oo) ker(f}a)(kvs,h)@(vs,h))‘
for all s. Note also that for any ¢ € 7*(C°(X2)) @ ®p(su(F)) we have

0 - <¢7 GS (\IIJ—72’°O)>L2(S]I¢,1,OO)

0
= 0= 7 {6.Cs (Vom)) 2, , )
= <¢’8SG.9 (\IJL,ZOO))LQ(

gk,l,oo) ’
so also
asGs (\I’L,Zoo) J_LQ(gk,l,oo) ker(@zkvah)@(vs’h))'

for all s. By Lemma [5.5| we have

V12(s) = Wi00 € Wip gue(s)(9k1,00)-

We will write G for the Green’s operator for :D?Voo,h)g(%o,h)' On the space Ci°(P(E)), we
have

GS f— GOO — GOO (@] (szvs,h)g(v&h) - QTVQO,}L)Q(VOOJZ)) O Gsv
since
gzvs,h)g(\}s,h) e} GS - Goo (¢] @Ekvomh)@(voo’h) - IdCZO(IP}(E))l

One may easily show that

Sl

o (@Ekvs,h)@(vs,h) - vaoo,h)@("w’h)) HC"’( =

gk,l,oo)
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for all m and j, and all s sufficiently large, by using the expression for thes operators, and previous
estimates. We therefore obtain G C—> G, and in fact

9 (Gs — Goo)

C
Howgk,l,m) =

for all m and j, and all s sufficiently large. In particular

”8thHW4,p,q,wa(s)(Qk,1,oo) =k HaSGSHW4,p,q,w5(s)(9k,1,oo) - O(k_1/2)’
and in particular
0:Gs (\IIJ_,2,00) € W4,p,q,w5(s) (gk,l,oo)’
By Theorem [7.10] we may therefore solve the parabolic equation

0 ~ . ~
(5'80) aQs + Q(vs,h)@(vs,h)(ﬁs) = - (\I]J_,Z(S) - \I’J_,2,oo) + ath (‘IJJ_,Q,OO) )
Qo =Go (V1 9)
Now we define B
Qs = Qs + Gs (_\I’L,Zoo)
so that (25 automatically satisfies the initial value equation

9 "
(5.81) s+ D, D, n)(2s) = =V 2(s).

ot
Q=0

We also obtain an estimate of the form

HQS Wi pt1,,9,0e (s) (95:R) - HQS -G (_\IJJ_’ZOO)HW4»17+1,q,ws(S)(gk71a°°)
< C HGO (\IJJ"Q’OO)||LEP+Q(gk,1,oo)
+C || = (¥ 2(s5) = Wio0) + 0:Gs (\IIJ"z’OO)||W4,p,,q,wg(s)(gk,l,00)
= O(k'?).
If we define Qo to be the unique solution to
(5.82) >(k))omh)@(\)oo,h) (Qo0) = =V 200,
that is
Qoo = Goo (_‘IIJ_,Q,OO) )
we have

(583) HQS B Qoo||W4,p+1,q,1u5(s)(gk:,1,oo)
S HQS - Gs (_\IIJ_,Z,OO)
O(k'/?).
In particular we get that €5 converges to o smoothly.
Formally, from equations and we also get equation [5.29

0@y 2(s(t))
ot

) + HGS (_\IIJ_,Q,OO) - Goo (_\IJJ_,2,OO)

”W4,p+1,q,wg(s) (gk,l,oo ||W4,p+1,q,wg(s) (gk,l,oo)

(5.84) +1i070y (Scal (©r.2(s(t)))) = O(k™),

for all s € [0, 5].
We now define

(5.85) H (wr2(s(1)))
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1

= H(wpa(s) = k2 (U 1(5) + Dy, 1y w, i (Q0))) + kL, ().
Then with this definition we also obtain equation that is, for all s € [0, 5],
0,0, (H(wa(s(1) = 05,05, (H(wy 1 (s(1)))
—k 210,05, (¥ 1,2(5) + Dy, 1y, (%))
+k72 Ly, ()
(5.86) = k7! (aw’“gf(t) Ly, (wgg(s(t)))) + Waa%

7“]{_1 (a (Wg,l(s(t;)s-Fk:_QQs) +£Vs (W;72(8(t)) +k_293>)

= k! (aw’“g(;(t)) + Ly, (wm(s(t))) .

In a similar way, we define
(587) H(wk,g,oo)
= H(Wp1,00) 5Ly, (o),

where
1"
_92.
Wk2,00 = Wi 1,00 Tk 7107,0., (Qoo)

To finish the proof of Proposition it remains to prove estimate that is, we must estimate
the quantity

[Scal (wi2(s(t))) + H(wr,2(s(t)) — (Scal (wi,2,00) + H(wk,2,00))
Formally we have
Scal (wr2(s(t))) + H(wk,2(s(t))
= Scal (wFS(P“l)) + k71 Scal (ws) + Zkil (\I’g)l(s) + \IJEPQZ (s) + \11(2)( )))
(

||W4apw‘Z7wg(S)(gk,1,oo) ’

=3

(I)thO

— Scal (wFS(IP”“*l))Jrk LScal (ws +Zk ( LSS +\I’J_,l,oo)7

where \I/(ZQ)Z( )s \I/Eb]z 1(5)s \I/(f)( ))\I/(ZQ)Z o \Il<(1>2;3 oo’ \I/(f)l ~ are defined by these formulae, so that

l
Seal(wya(s(t)) + H(wia(s(t)) — Scal(wpa(s(t)) — H(wra(s(1))
658 = LK (W) — W& )+ (98 1(5) = v )+ (¥Phs) — w7 L)) -

5.4. The parabolic estimate. We may at last derive the estimate Note that
Scal (wg,2,00) — Scal (wr,2(s(t)))
= Seal (w100 + 0,07 O + k10,01 B + k2101, 0. Qo) )
—Scal (Wk,l(s) +0.,,07,((0(s(t) = Ono) + Ouo) + k™110,,05, (E(5(t)) = Eoo) + Eoo) + k7 %18,,05, (Qs(t) = o) + Qoo))
so by Lemma (or more precisely its proof) we have

|Seal (wra(s(t) — (Seal (wroo)ly, 0
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| ((@)(s) -

=1

i ) (@)s) -

2 2
\II(Z)Z oo) (g‘(b;z,l(s)

czwz/ e (0) |07 (w100 — wr1(5)|

CZ kil Z/T |w5(t)\2 H‘a{ ((z’gjoﬁjoo — iEJSZ?JS) (@oo + I + Qoo))‘
=1 j=0

(1,0)
s's

I o ATACIL
=1 j=0"T

CZk‘lZ/w\we(t)Q

—i—CZk ZZ/ |we (t

Cvol(P(E), gk,2,00 Z IZ/ ]wg(t)|2H<
=1 j=0vT
L Cvl(B(E), grane) S k- IZ/OO|wE(t)
=1 =0T
+Cvol (P

)s 9k,2,00 Z ZZ/TOOIwE(t)
7=0

+czklz/ 2 (£)2
I=1 j=0YT

CZWZ/ s 1) [40(8(5) — ) + 0, (G (i8)) 35

=1 j
oo q—1

O RS / (1) 2|4 (G (i50) — GooliBoc) + 95(5) )|,
=1 7=0

+C§:k‘_l2/ |w \IJL 2( ) \IJL,Z,oo) +8SGS (\I’L,Q,oo))
=1 j=

+c§ojkl§j | 016 (¥ a) - G (20

—l—CZk ZHGOOHLi
=1

+29k200

Lipa1-5)(9)

9% ((6(s(t) — Ocx))

1 (E(s()) — Ex)

aﬂ ( 0|

> 07 (b A al?)

0 ((Tsals(t) -

) T 1GoliBoo)ll s,

U )+ (25 () — w8 )+ (2s)) - 2,

2

L4(p+1 J)(gk 2 oo)

aja(ovl)

s's

+

12

2

Li( 1 )(gk,Z,oo)

2

2
L4(p+1,j) (9K,2,00)

Gg (Wh 1,00 — Wk,l(s))D

C4p—7) (gk,2,oo)

2

2

=)

L) TG0 (Wi 2.00)ll 2

1 (Qs(t) — Qo))

Li(p J)(gk,2,oo)

(s) - Aa, (7))

Wi p.g—1,we (s) (9k,1,00)

W4,p,q—1,wg(s) (gk,l,oo)

2

L2( 41— )(gk 2,00)

ipr1-5)(9)

j 1,0 0,1
et

Li( +1—7) (9k,2,oo)

2

Li(erl ])(gk 2,00)

2

CAPHI=9) (g,2,00)

D7

CHPTI=) (gk 2,00)

C4(p_j)(gk,2,oo)

4(p— ])(gg,h)

LZ(p J)(gk,2,oo)

4(p— J)(gk,2,oo)

4p+2(9k,1,oo)

CZ /2 + CZ k™ UOl P(E),gk,Zoo) (||@°°HC4”+2(91€,2,00) + ||Go (\I/J_’Qyoo)HcélijQ(gk’Zoc))

=1 =
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+C Yk wol(P(E), gk 2,00) | Go(iBoo) lcap+2(gs, 1)

=1
((Fnalott) ~ o) )

2
+CZk Vol (P(E), 9,200 Z/ lwe(t)
— (W12(5) = U1 g00) + G (V1 .00))|

C4(p—j) (gk,2,<>o)

=1

—i—CZk vol(P(E), gk,2,00 Z/
7=0

C4(p—3)
=1 (916,2,00)

(Gs(lﬁoo) -G (Zﬁoo) + gS(S) ﬁs)

+CZk vol(P(E), gk,2,00 Z/ Jwe (t)]

C4(P—j) (gz7h)

+Czk vol(P(E), gr,2,00 Z/ [w(8)|* [(B(s) = Boo) + s (Gs(iBo0) — g5 () - A, ()l rato— (g, 1)
7=0

=1

V| 95) = Goo (*\I’L,zoo))‘

+CZk vol(P(E), gk,2,00 Z/ |we(t)

C4(p—7) o
=1 (9k,2,00)

O(k'/?),

where we have used the inequalities [5.38] [5.61] [6.83] and Lemma and the fact that by Lemmas
and [£.20] the constant appearing above is independent of k. Note also that Lemmas and
work just as well for the metrics gi 2 0o as for gi 2 0. Note also that by Lemma we have

Hgg’)l( Q(Z’Z’OOHMQ pra—T1we (s) (9k,1,00) = O<k1/2)’
Hgi’h,l s) — 7((%’[700HW‘lvp,,qfl,wE(S)(gk,l,oo) < O(k1/2),
H 75_2’)1’00HW4,pnq—1,w5(s)(gk,l,oo) = O(kl/Q)'

By construction, we have that
H(wia(s(t) = k7 (2r@n(AugFa,) = k72 (W1a(s) + Un(s) + Ve, i(s))
k2@ (1A gpnar (1) + 20805 O(w) - Awp Fa,) — 2Au; Fa, 015)
—k72 (D2, DunOw) + Dy, 1y D) (2)))
+k73 Ly, (Qs)

(=1 (@n(ns))’

I~

||
N

+2rk ™ 0 (Ayy Fa,)

)

ons - T i
k2 (G 200 Fa o) YD (@a(n)'
=1
and also
H(wpoo0) = k' (2r@h(AwgFa.)) — k72 (‘Pu,oo + U 00 + ‘I’%J,oo)

—Tk_Q(I)h(iAAOEOndE (7700) + 2AwE@oo : AngAoo) - 2AW2FA0<> © 7700)
k7 (05,00 Oo0 + Dy 1D i)
—i—kfgﬁvoo (Qo0)
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00
+2rk~ (I)h AngA Z (I)h 7700))
=2
00
+’f’]€_2‘1)h (2AWZFAOO 0 Moo Z (I)h 1700))
=1

Then in the same way, applying Lemmas and as well as the inequalities
5.83] we obtain that

HH(Wk,Z(S(t)) — H(wk,Q,oo) HW4,p,q—l,wg(s)(gk,2,oo)

_ —(2 2 —(2 —(2 —(2 —(2
(8100~ W) + (W10 - 9L1c) + (W40 - 920))|
Wy p.a—1,we (s) (9k,1,00)
2 =(2) (2) (2) =(2) 5@
= Z; H 5.0(8) = V57 00) (‘I’ o1 (8) — ‘I’cbh,l,oo) + (\IIJ_,Z(S)) ‘I’L,l,oo>’ Wiy ot o) (001.00)
= O(k'?).
We note that by Lemma [£.13] we also obtain
—(2 —(2
[T10) - ) < OW'2),
Wi p,q—1,we (s)(9k,1,00)
572 572 1/2
U — U < 0Ok ,
H Qh’l(S) Qh’lpo W4,p,q71,w5(s)(gk,l,oo) - ( )
—(2 —(2
[92s) -9 < OF2).
Wi pg—1,we(s) (9k,1,00)

We then have

HSCG/l (wk72(s<t))) + H(wk72(s(t)) - (Sca’l (wk,Q,oo) + H(wk727oo)) HW4,1),Q—1,U)5(S) (gk,l,oo)

(0 90+ (4520095, + (80095

Wi p,.q—1,we(s) (9K, 1,00)

IA

2 2
+ Hgé’lzul(s) - gSI>;3,Z,(><)

oo
—l (2) (2)
Z k (H‘I’z,l(s) ~ Y500 W W
=3 4.9, 1we (s) (9k,1,00) 4,ps,q—1,we (s) (9k,1,00)

+ Z s - 9

+Zk + W6 i(5) — T 11|
=3

= O™,

E,l,oo‘

Wi p,,a—1,we (s) (k.1,00) Wi p,.q—1,we(s) (9k,1,00)

+ [T - 7P

W4,p,,q—1,w5(s) (gk,l,oo) W4,p,,q—1,w5(s) (gk,l,oo)

for each [, where we use the previous calculations, and also Equation [5.88]. Finally, again by Lemma
we obtain that

H\I’(Q) \IJ(E’LOOHWM) oo @ht0) < (f)<1€1/2)7
H\Ijq)h,l - Sbh?l’ooHW4,p7,q71,ws(s)(9k,1,oo) = O(kl/Q)’
[ - 9%, | - ow,

Wap,qa—1,we(s) (9k,1,00)
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5.5. The proof of Theorem Now we spell out how to iterate the above process to obtain
an approximate solution to Calabi flow for all orders.

Proof. The proof will be by induction on [. The results of the two preceding subsections give
Theorem [5.1]for [ = 1 and 2. We simply iterate the procedure of the procedure, of the last subsection
used to go from [ = 1 to [ = 2, which applies almost unchanged.

Suppose the result is true for [, that is, suppose that we have functions

Ok,m(5(t)), Zrm(s(t)), and Qp m(s(t))

for every 1 < m < [—1, as in Theorem so that in particular we may assume the existence of the
the metrics wy, m+1(5(t)) and the functions H (wg m+1(s(t)) (and in particular the metric wy (s(t))),
as well as the fact that the functions defined by

Scal (Wmt1(5(t))) + H (wWkm+1(s(t))

(5.89) = Scal (wps(]P’r*l)) + k71 Scal (wy)
M=m-+2
Scal (kg m+1,00) + H(Wk m+1,00)
(5.90) = Scal (wFS(IF’T_l)> + k7 1Scal (wy)
_ m+1 m+1 m+1
+ Z M 2 M, o)o + \Ilgbh,M?OO + \Il(i,M,go)
M=m+2

satisfy the bounds

v s) (zmﬂloonp TR B O(k*)
(5.91) H‘P%”Z“ Ebn;j\})ooHW“ ey @hnoe) O(k'/?)
H‘II m+1) () = ‘IJTAZIOOHW“qu(s)(Qmoo) - O(kl/Q)’

as in the case of [ = 2 for which these facts are precisely equations of Proposition [5.7] in
the previous section. In particular we may assume this this is true for m =1 — 1. We will show the
existence of functions

Ok 1(w(t)), Zp,1(s(t)), and Qp1(s(t)),
such that the metric wy;41(s(t)) defined in Theorem achieves the desired result.
First, we define paths of functions

O1(w(t)), and Q. (s(t))

and a path of endomorphisms 7 ; as follows.
We define ©y,;(w(t)) to be the solution to the initial value problem

0Ok (w(t)) ., ~ ~ (i = (1
S DL D Ora(w(t) = — (P () — B )

0r1(0) = —Okico,

(5.92)

where O}, o solves the elliptic equation

(5.93) D55 Dus Ok oo = —‘T’(z?m,w
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This solution exists by the parabolic Sobolev bound on \Tlg)l 41(8) — \ng)l 1007

assumed, and the fact that by construction

Y cA0) )
El+1( s) — Vs 41,000 Uit 1,00

which has been

are orthogonal to
ker QEQE =R.
Now we define ©y;(w(t)) by
(5.94) Op1(w(t)) = Opi(w(t)) + O tyc0,
This in particular forces ©y;(w(t)) to solve the intial value problem

00y, (w(t))

(5.95) o

+ D%, Dus Opa(w(t)) =~ (s)
©r:(0) = 0.

The parabolic Sobolev theory will imply that

Or(w(t)) = Ok o0

in C°, just as in the previous subsection, and that there is a bound

_ — 1l 1/2
599 ORI ~Onshy = [P =0
Next we define 7)5; to be the solution to the initial value problem
ons, . : _
(5.97) g Db Aypnan(isg) = —i(Bi(s) — Broe) + s (Gs(iBro)) — gs(s) - Aa, (7y)
s = Gol(iBreo),
where if
l
(5.98) By, (2roq(s)) = UG) 14(5),
we have

— Dy Ok (w(?t)) - Awg Fa, + au(s +Zcﬂl IdQ],

where }; ¢;i(s)Idg; is the projection onto ker A ppnap = ct, 7, is defined to be the solution the
system of ordinary differential equations

dﬁsl
Tt’ = —ZZC” IdQJ

ﬁO,l = 07

for all time, and gs(s) is a cut-off function which vanishes on [25,00) and gs(s) =1 on [0, 25].
Note that
Bi(s) L ker AAéE‘ndE

for each s with respect to the metric, and Gs(if,) is the Green’s operator for AAfndE applied to
131,00, Which is defined to be the part of

_Awg;@k,l,oo ’ AUJEFAOO + al,OO
orthogonal to ker A APndE, Which therefore enjoys the property
131,00 L ker AAsEndE,

for all s, since C- Idg = A gpnaw C ker A ypnan.
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Just as in Step 2 of the previous subsection, we will be able to use all of this information to
conclude that the right hand side of the above equation lies in the appropriate parabolic Sobolev
space, and is orthogonal to ker A ypnar (and therefore to A ypnar) for all sufficiently large s, so that
the solution therefore exists for all time, and satisfies the corresponding parabolic estimate. We
may therefore define

(5.99) st = Nsi + Gs(=iBroo) + g5(8) Ty
so that by construction
s, : 9 -
(5.100) e T Bapnar(ne) = —ifi(s) + 5 (gs(S) : ns,z) :
o,y = 07

Here again we note that the right hand side of this equation is equal to A,y O 100 - Ay Fa + 01,00
for s € [0, S].

We use this solution to define the function
o0

(5.101) Era(s(t) = = > k0D (@, (insy)),
i=1
so that if we define
(5.102) oy =h+ k" hngy,
we have
(5.103) wk’(hﬁs,l? Js) = wk(h, Js) + k_ligjsajs (Ekyl(s(t))) .

By the parabolic theory, 1, will converge smoothly, and therefore =, ;(s(t)) also converges smoothly
to some smooth function

=k,l,00

and again the parabolic theory implies a bound of the form
(5.104) |1Eka(s(t)) — Ekvl"’o‘|W4,p,q,w5(s>(gk,1,oo) = (’)(k;l/2).

Finally we define le(s(t)) to be the solution to the initial value problem

J - ) N
o et (8(0) + Dy, 1y D, ) (i (s(t)))

! ! !
(5.105) = - (\I’S_),lJrl(S) - \IJS_),lJrl,oo) + G ("I’(L),lﬂ,oo) ,
01(0) = Go(Qtoo),

where G is the Green’s operator associated to ”)vas h)ﬁ(vs7h) and ;. is the solution to the
elliptic equation

. I
(5.106) Do )P Voo k) (Qe00) = —‘I’(L),HLOO,

where again one proves exactly as in Step 3 of the previous subsection that the right hand side is
the Sobolev space and orthogonal with respect to g 1,00 to ker CD?VS,h):D(Vs,h) for all s, and so the
solution exists for all time. Now we may define

(5.107) Qs (s(1)) = Dpa(s(t) + Gs (—00), )

which therefore solves the the initial value equation

9 .
(5.108) 5 et (5(0) + D, D) (Qa(s(?)) = —P1i4a(s),
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Qr(0) = 0.
This solution will converge smoothly to € o, and the parabolic theory will imply the Sobolev
bound
120 (5 () = Dol o oo @nm) = O(k'/?).
Now we may define the one parameter family metrics
(5.109) Wi, 14+1(8(t))
= wia(s(t) + ki85, (O i(w(t)) + k71i0,,0,, (Eri(s(t)) + k=05 05, (a(s(1))) -

All the calculations of the preceeding subsection apply verbatim to this construction, the only
difference being the correction potentials eliminate the terms

I I
\IJ(E?I-I—I( )s ‘I’fbi 141(8); \II(L)H-I( )

because we have increased [, so that we formally obtain

(5.110) Scal (wgi+1(s(1))) + H(wr,1(s(1))
= Scal (wFS(IP’Tfl)> + k7 Scal (wy)
+ Z k- M H—l)( )-}-\Il(H_l)( )+\Ij(l+1)( ))’
M=1+2

where the function H(wy+1(5(t)) is constructed from H (wy(s(t)) in a completely analogous man-
ner to the way H(wy2(s(t)) was constructed from H(wy1(s(t)), and by definition we have for
s €[0,5]

9 -
(5.111) rk! <w + Evswk,z+1(8)) = 107,07, H(wk,1+1(5)),

and precisely the same arguments apply to the solutions of the elliptic equations so that we may
define wy, 141,00 analogously, and we have formally

(5.112) Scal (wk71+1700) + H(Wk,l+1,oo)
= Secal (wFS(IP’Tfl)) + k™1 Scal (wy)
(1+1) +1 +1
o R MR+ g, e + P (5)),
M=142

and by construction wy j41(s(t)) = Wk, i+1,00-
Moreover we may write

41 . g-1
" _ . qu _
H(wg41,00) = 27k 'y, (AoazFAoo - @j (Z 2 Cj’q’oo) Ide) +0(k 2)'

q=2

Precisely the same calculations used previously, using the Sobolev bounds on

Ok, (w(t)) = Ok 00, Ek,1(5(1)) = Ekt,00, and Qg i(s(t)) — Qe oo
apply to give the Sobolev bounds

H\P Hl (s) = \Pgt‘}OOHWquE(g)(gkloo) O<k1/2)
(5.113) warar = oSl iy = OF)
HQJ Hl) (s)) = WS{JF]‘}OOHWM gywe (s)(9k,1,00) - O(kl/Z)
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for all M > 1 + 2, and therefore

[Scal (wk,i+1(s(t))) + H(wri41(s(t)) — (Scal (Wri41,00) + H (W i41,00))
— Ok 112y,

HW‘lanq,wE(s) (gk,l,oo)

Finally we remark that Equation [5.11]also follows since the only facts we have used that involved the
metric gi ;41,00 are the parabolic estimates (which are valid for any metric), the Sobolev embedding
theorem Lemma 5.8 in [F], which is actually stated explicitly for gi ;41,00 for any [, and Lemma
which one can easily check by examining the proof, as well as the results used therein, that
this lemma is equally valid for the metrics gj ;41,00 for each [, and so the equation follows with
exactly the same proof. We have therefore proven that the result holds for [ + 1 and completing
the proof of the theorem, by induction. O

6. INVERSE FUNCTION THEOREM ARGUMENT

6.1. Strategy of the proof. We wish to find a path @; of smooth metrics solving the Calabi flow
equation

0w _

% 48,8, Seal(@y) = 0,

For the one parameter family (depending on S) of paths of metrics @,f ,(s(t)) provided by Theorem
where s = rt/k we have that

0wz, (s(t))
ot

where 8,?71(8) = 5;(0’,‘371(8)) and U;zl(s) satisfies a uniform estimate of the form

+ Z'5J8JSCal(o/.\)kS,l(S(t))) = igJaJaks,l(S)ﬂ

o1(s)| < Ok,

on the interval [0,S] (where we may take S to be as large as we like by modifying the cut-off
function which introduced this parameter).

Note that since wg(ht,J) and wy(h,J) are cohomologous for all ¢, by the 99 lemma and the
statement of Theorem we may write @,il(s(t)) = wi(h, J) +i5]8]@£7l(8) for a family of smooth
functions @y, ;(t), this is equivalent to an equation of the form

9%y (1)

o + Scal(@,ﬁl(t)) = 3721(75)

By construction
9y, (s(t))

P 0705 H (@ra(s(t))),

which implies
= 0 = .
Zajaj <m¢k71(8(t))) = Z(?J@JH (wkyl(s(t))) 5

so by possibly adding a constant to @ ;(s(t)), we may assume

(61) 2 Brals(1)) = H (Brals(1).
6:2) it (P2 L orato))) = H i)

and therefore we may write

Scal (wy(s(t))) + H (wii(s())) = or(s).
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In precisely the same way we may write
Scal (W,1,00) + H (Wk,1,00) = Ok, l005

where oy, (s) converges smoothly to a function oy ~. By Theorem this implies a parabolic
Sobolev bound:

- —(14+1/2)

||O-k’l(8) O-k’l’oo||W4,p,,q,w5(s)(gk,l,oo) S Ck :

If we can find a path of smooth functions ¢(s(t)) and a smooth function ¢ such that such that
(6.3)
Scat (s (5(0) + 01,05, (B(6(0)) + 600) ) +H a0+~ (5 (6(5(0)) + L, (6(5(0) + ) ) =0,

where V; is the infinitesimal generator of the path of diffemorphisms gs, then
B(s(t)) = G (wra(s(t) +i0.,05,(9(5(1)) + 6o0))
(6.4) = Dra(s(t) + 1005 (8(5(1)) + doc)
= wi(h, J) +i0,0; (Prals(t) + B(s(t)) + boc ) »
solves Calabi flow:
Seal (wy(h, 1) + 0505 (Pra(s(t)) + H(s(8) + doo ) ) + % (Brals(t) + B(s() + b
= Seal @(s(0) + o (Prals(t) + B(s(0)

= Seal @(s(1))) + H @ra(s(t)) + = (3(s(8)) + b))
-0

Slo 2

The idea then is to perturb the approximate solution ¢y ;(s) to a genuine solution by adding a
potential of the form ¢(s(t)) + ¢oo. We will do this via an implicit function theorem argument. For

o(s(t)) € Wz?,p+1,q,w5(s) (9 1,00), we have by definition that ¢(s(t)) — 0 as s — 0 in Li(p+1)(gk,l,oo)7

so that for any ¢ € Li(p_’_l)(gk,l,oo)a
B(s(t)) + Poo = doo

in Li(p H)(gk,l,oo). Then we may consider the Calabi maps
(6.5) Cht : Wi i1, () (G tioo) X L 1) (0k1,00) = Wapqawe () (9k 100) X Lip(Ght.00)

(6.6) (@(s(t)), boo) = (Tht (D(5(t)), o) ; ik (Poo))

where

(6.7) i (B(s(2)), doo)
= Seal (wi(s(t)) + 0,05, (B(s(t)) + doo) ) + H (wra(s(t))) + k™" ( ;qu(s(t)) + Ly, (o(s(t)) + qzsoo))

— (Scal (wkyl,oo + igJooaJoo¢OO> + H(Wk,l,oo> + rk_lﬁvoo(boo),

and
(6.8) Iik,l(qﬁoo) = Scal (wk,lm + Z'EJOO 8JOO ¢oo) + H(wkvl’oo) + Tk_lﬁvoo¢oo.

and where € > 1/2.
We will now slightly rewrite these operators in a more familiar form. Recalling that

VOO == X—iAwEFAoo = vgk,l,oo(bh (_AWEFAoo) ?
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XAWEFAOO = Joovgkjlyoo@h(—szFAm):JOOVOO’

so that ®; (—AwyFa,) is in particular a Hamiltonian for the Hamiltonian vector field Xy,
with respect to wg 1,c0-
By definition we have that

W L0 = Wk 1,00 + 107, 010 (Phl00 — Phil,00)5
so that by Lemma and the limit of equation as s — 00, for [ > 2 we may write:

rk~!

rkT Hy v, (Whioo) = 7T ®h (—AugFay) — 5 L1 O~y Far ) (Philioo — Ph1,00)

_ 1 _
= rk 1c1>h(—AwEFAOO)—iH(wk,lm)wk 1o, (Awy Fa..)

1
= *§H(wk,z,oo),

where Hj v, (Wkio0o) is a Hamiltonian function for XAprAoo = JooVs with respect to metric
Wk 1,00- In other words the function H(wy ) is in fact —2 times this Hamiltonian function.
We therefore obtain

= 1
5k,l(¢oo) = Scal (wk,lpo -+ Zajooajood)oo — 21k~ 1 (H]VOO (wk,l’oo) — i‘cvgk,l,ooq)h(_AWEFAoo) ((;300))

1
= Scal (Wk,00 + ZaJooaJoo%o) (‘I’h (AwsFa) — §£ng @i (Mg i) (k00 = Phi1,00 T <l5oo)>

(
= Scal (wkl,oo +i07, 07 b0 ) — 2rk™! (HJOOVOO (wk Loo 107,01, (Pklco = k100 + ¢oo)))
(

= Scal wkloo+zajwﬁjw¢oo — 2rk™ 1(HJOOVOO (wklooJrz@Jwaquboo)),

and also

Tk, ((b(s(t))? ¢oo)
= Seal (wna(s(6)) + 180,05, (9(5(0)) + 0)) + H ra(s() + 78 (£-0(5(0)) + Lu: (65(0) +000) )

— (Scal (wa,oo + igJooaJoo ¢oo> — 27’k71HJooVoo (wk,l,oo + igjmaJm¢m)> .

Notice that the operator sy is precisely the extremal metric operator (see equation for the
vector field
2k Joo Voo = 2rk ™ IV, | . Pn(Aws Fa..)-
These maps are well-defined and differentiable on the space W4 L. (t) (Gk,1,00) X Li(pﬂ) (G 1,00)
for all sufficiently large p by Lemma The equation

(6.9) Cra ((8(s(1)), do0)) =0
implies that
B(t) = Dra(s(t) +i0105(P(s(t) + Poo)
solves Calabi flow, by the above discussion, assuming we can actually take ¢(s(t)) + 500 to be

smooth.
By the previous discussion, there is also a pointwise uniform bound

Cr1(0)] < CR=(FFL),
In fact, by Theorem

(6.10) €O, 4 ooy (91000 X123, (95,10
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o Ho-k’l (S) o O-k’l’oo HWél,p,q,wg(s) (gk,l,oo) XLip(gk,l,oo)

< CE2)

for all p,q, and «.

We would like to use a quantitative version of the inverse function theorem to find an exact
solution to equation [6.9) and therefore to Calabi flow. Unfortunately, the linearisation of the scalar
curvature involves the Lichnerowicz operators of the metrics wy;(s(t)) and wy o (see Lemmas
and and formula below) which have kernels isomorphic to R and R™*! by Lemmas
and Because of this, we will not be able to solve Equation Rather we will solve a modified
version of this equation for an entire one parameter family of operators le, ; (to be defined below)
for which a solution to

(6.11) Ci (9(s(t)), do0) = 0,

will give a solution to Equation [6.3] up to time S. Since we will solve this equation for every time
S, we will therefore obtain a solution to Equation [6.3 and therefore to Calabi flow on the original
manifold (P(£),J) for all time.

Note that this problem is already present in Bronnle’s solution to the (elliptic) extremal metric
problem, that is the equation

“k,l(@boo) =0.

To find the extremal metric on P(€y) Bronnle modifies the vector field Jo Voo by a vertical vector
field induced by a block-diagonal endomorphism, the Hamiltonian of which kills the orthogonal

projection onto ker ®7

(wk,l
We will follow his method exactly for the component the second (non-time dependent) component

Kk, of our map (since this is exactly the same as Bronnle’s map). The time dependent com-

( Jw,h))g(wm( Joo b)) looe(x R), allowing him to carry out the perturbation.

ponent 7 is slightly trickier to deal with. We need to redefine it so that it accomplishes four
things at once. First of all we need it to get rid of all the kernels involved. We will accom-
plish this for ker @zkwk,l(Js’h))g(wk7l(Js7h))’COO(XJR) by adding a term given by the projection onto
this component. Since this is constant for all s, this term will be zero after we take i0;,0;,. For
ker tawk’l((]oo,h))g(wk,l(Joovh)) | oo (x,r) We accomplish this by defining the part of 7;; that is not time-
dependent to be exactly the same as (the modified) sy, which also means that if kj; vanishes, 75
is purely time dependent, as before. Therefore, secondly we must arrange that the time dependent
part converges to ki; at an appropriate rate so that 7 ; still gives a map between the parabolic
Sobolev spaces. Thirdly, we need to know that the vanishing of the (modified) sy ; and 75, together
(in other words of C,:i ; for every S > 0) implies the existence of a solution to Equation Finally,
we need to know that the analogue of inequality [6.10] will still be satisfied. This last point will follow
from any reasonable definition, and there is essentially only one way to acheive the first point (that
is, by following Bronnle’s method). To acheive points two and three simultaneously, we will use
a cut-off function (which is where S appears) so that at infinity the time dependent part of 74
converges to the time independent part, but up to time S it remains unchanged, so we also acheive
the third point above (but only up to time S). This is why we are required to solve our equation
for an entire one parameter family of operators, rather than a single operator as one does in the
elliptic case.

We will start by setting up the definition of the operators C;g ;- In order to deal with the kernels
mentioned above, we will adopt Bronnle’s framework from [B], to modify the non-time-dependent
part sy of Cr, and then we will modify the time-dependent part 73 ; of Cj; accordingly.
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Namely, recall that by Lemma any element of ker CDZ‘ Wit (oo h))Q(wk (Joosh)) oo (x,r) Wll be
equal to ’
5 (@,0;1dq;),
with 6; € iR, and these functions are precisely the (real-valued) Hamiltonians for the vector fields
X@ = X@]'led@j = Joovgk,l,oo@h(@]ejlde)
We will write A for the eigenvalues of Ay F_, and
’19]' = )\;9]',
and similarly
Xﬂ = X@j’ﬁjlde
Again, because
W 1,00 = Wk,1,00 T 105000 (Pklo0 = Ph,1,00) 5
where the difference ¢, ;0 — @k,1,00 satisfies by construction the property

Lx, (k100 = Ph100) =0,
then by Lemma if we set ¥ = (01, ,¥Y,), the functions

Hxy(Whioo) = Pn(®59;1dg;) — %gk,l,oo (Ve ®r(@5951d0,), Vi, oo (Phioo = P10 )
(6.12) = Li.xy (Phio0)
where we have used that
Lr.xy (WE100) = 200707, Pp(®;9,1dg,).
Therefore the Hx,(wg 00) are Hamiltonians for Xy with respect to the metric wyj o, and so

ker g?wkyl(Joo,h))g(wk,l(‘]w)h))‘COO(XaR) = {HXﬂ (Wk:,l,oo) S (Z]R)m} (&) R~ Rm+1,

where the additional factor of R comes from the addition of a constant. More precisely, for any

2 . . . 2 . .
Do € L4(p+1)(9k;,1700), if we write progker@?%Z(JOO,h))@(wkyl(‘]wh)) for the L*-orthogonal projection

onto ker gzﬁwk,l(Joo,h))g(wm(Joo,h))|C°°(X,R)’ we may find a pair (¢, R) € R™ x R such that

: o1
PTOJxker Q?wk,l(t’oo,h))g(“’k,l(Joo’h)) (Qsoo) =2rk HXﬁ (wk,l,oo) + R.

For any ¢, with
»CXg (d’oo) =0,
we may define
Hx, (wk 00 + 10,01 (4))

in the same way. Note that the map

(600,9) = Hx, (Wi,t,00 + 10, O ()
is linear in both ¢, and ¥, and so the linearisation of this map is given by

d =
(6.13) %HXW (W 1,00 +10.,, 0y (WP))w=0

d 1
= g0 n(®0;1dg,) = wo k1,00 (Vo1 0 (@5951d0,), Vg1 e (Phtioo = Phi1,00)) lumo

d

1
_@Uﬂi‘gk,l,oo (ngg,ooq)h(@jﬁdeQi)’ vgk,lam((ﬁ)) ho=o

= Hx,(Wkioo) = Ly xys) (Ph100) -
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Now let fg(s) be a cut-off function which is 0 on the interval [0, S] and 1 on the interval [25, 00).
We will also consider the path of vector fields

X5 (s) = fs(s) - JooXo = f5(8)Xiny, Fo -Fys

wn A
where
Fy = @;0;1dg,.
Note that for t < S we have X3 (s) =0, and for t > 25, X5 (s) = Joo Xy.
In the same way, we will define

‘/SS = ‘/tg(]. - fS) + fsvgwkyl(s(t))H (wk,l(s(t))) ’

so that V¥ = Vj for s € [0,5] and V5 =V H (wg(s(t))) for [25, 00).
Note that we may write

w1 (s(8))

Wi Lo 1 10,7, 0700 oo = Wh1,00 T 101, 0 (P Lo — Phil00 + Poo);
and so by Lemma [2.4] we have that

Hj v. (Wk,z,oo +1i0,7., 0., <Z5oo)

1
= Hjy v, (Wkieo) — 39k 1,00 (ngk,lmHJoovoo (Whit00) s Ve, o (¢oo))

= Hjy_ v, (wk,l,oo +i0.7,. 07, (Pkloo — Phloco T ¢oo))
1

= Hiyovie Wri00) = 5901 (s0) (ng,c,lm H Voo (@h1i00) s Vg, (Phlioo = P10 + @500))
1
= HiVie (Wh1,00) = 5901 (s(0)) (ngk,l,oo H Voo (@Wh1i00) s Vg, | (Phlio0 = SOk,l,oo))
1
~ 5wk (s(1)) (HJOOVOO (Wk1.00) s Vi, ey (¢oo))
1
= HJOOVOO (wk,l,OO) - 59&)&1(8(1&)) (vgwk,l,oo HJooVoo (Wk,l,oo) 7vgwk71700 (¢OO))
so comparing the second and final lines above we obtain
Evgwk’l’w H oo Voo (@k 1,00 ) (¢o0)
1
= gYwra(s(t) (vgwk,l,w H Vo (W 1,00) ’vgwkyﬂs(t)) (¢00)>
1
= igwk'l(s(t)) (vg‘*’k,l,oo HJooVoo (Wk:,l,oo) 7vg“’k,1,oo ((boo))

In particular, Lys (¢(s(t) + ¢poo) converges smoothly to Ly, (¢oo)-
Now we may define a one parameter family of parametrised Calabi operators

(6.14) C 1 Wit g (s)(Gki100) X Lapiny (Gh1,00) X R™ X R = Wi, () (Gh1,00) X Ly (9k.1,00)
given by

(D(5(8)), Poos 9, R) = (101 (D(5(t), Poo) s KR4 (doos R))
where

(6.15) 7 (6(s(1)), Poo)
= Scal (wk,l(s(t)) +0.4,0s, (6(s(t)) + ¢>oo)> + H (wra(s(t))) + rk_lﬁxg(s) (k,1,00)
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0
ok (S0(5(0) + Ly (Gs(8) + 0x0) )
_ (Scal (wk,l,oo + igjooaJoo%o) — 2k Hy v 1 x, (Wk,lyoo + igJooaJoogboo)) :
= Seal (wkvl(s(t)) +19,,07, (¢(s(t)) + ¢5oo)) + H (wr(s(t))) + rk”ﬁxﬁ(s) (P 1,00)

k™ <§s¢<8<t>> + Lysxs(s) (@(s(0) + %))

- (Scal (Wk,l,oo + igJooaJooﬁboo) + H (Wito0) + 167 L x(5) (Prtoo) + TR (Lvmtdnxy (¢oo))) ,

and where
Fi(9o0 R)) = hiki(oo) = 20k Hx, (Wi o0 + 101000 (900)) = R

= Seal (Wit oo + 101,05 b00) = 20k~ (Hyvietxy @ioo + 10,00 (60))) = R
(6.16) = Seal (w0 + 1010 b0) + H (Wi 00)

kT L xp(s) (Prtoo) T TR (Lv 4y xy (000)) — R
Clearly for every S > 0
Ci21(0) = Cr1(0),

SO

(6.17) [CHQI < ok~ (172,

W4,p,q,w5(s)(gk,1,oo)XLip(gk,l,oo) o
In order to obtain an exact solution to the equation
(6.18) i1 ((8(5(1)), ¢oo, ¥, R)) = 0,
and therefore to equation [6.3] up to time S, we wish to apply the following theorem to the maps

S
Ck,l

Theorem 6.1. Let V and W be banch spaces, and C : U — W a differentiable map whose derivative
at 0 is an epimorphism, having right inverse P: Then there is a neighbourhood By (0) C V' on which

the map C — dC is Lipschitz with constant ﬁ Then if we set § =& (ﬁ) , for any y € Bs (C(0)),
there exists a unique x € By (0) such that C(x) = y.

In the rest of this section, we complete the proof of Theorem [I.3] by establishing that the con-
ditions of hold for the operators C;z ;- In particular, we will need to establish control on both the
linearisation, and the non-linear parts of these maps.

6.2. A bounded inverse for the linearisation. In this subsection we will prove the following
proposition.

Proposition 6.2. For k >> 0 and |l > 3, the operator

(619) (dclil)() : W407p+17q,w5(5) (gk,l,oo) X L?l(p‘f'l) (gk,l,oo) X Rm+1 — W4,p,q,w5(s)(gk,l,oo) X Lip(gk,l,oo)

is a Banach space epimorphism with right inverse Py ;. There exists a constant C, such that for all
k>>0, and all (Y1, %00) € Wy p g (s)(Gkl,00) X L?lp(gk,lm), the inverse Py satisfies the property

”’Pk"l ((wt7 1/100)) HW4,p,q,wg(5)(gk,l,oo)XLZp(gk,l,oo)XRm+l
3
(620) S Ck ||(¢t’ woo)”W4,p,q,w5(s)(gk,l,oo)XLZp(gk,l,oo)
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_ 3
= O (16w or10) + 182, 0000
Note that by Lemmas and the linearisation of C;Z ; at 0 is given by

(dciy)  (&(s(t)); boos ¥, R)
((ar2), (@(5()), 0. 0), (i) (60, B))
where
(621) (dr,), (@(s(t), 6o, )
= Drs0)Deona(s(1)) (D(5(1)) + Poo) — %ka,z(s(t» (Vo oy Seal (@r1(0) s Vo, i) (6 (5 (1)) + 60) )
2 (5(0)) -k~ Les(o (pra(s)) + 7k~ (Lys (D(s(0) + 0-0))

. 1
ka 1 oogwk,l,oo (¢OO) + igwk:,hoo (Vg“k,l,oo Scal (wk,l,oo) 7vg“’k,l,oo (¢00)>

1 _
— 5 %wn00 (2?”k Vg o o Ve Wit 00)s Vo (¢oo)) = Liexy (Ph,l,00)

8 * * *
= %gb(s(t)) + ka,z(s(t))gwk,z(s(t)) (¢(3(t>)) + (Dwkyl(s(t))gwk,l( t)) — ka 1,00 wk 1 oo) (¢w)

1

5800 (Vau,, . (Seal @rioe) + H (@r100)) Vi, (9))

1505 0600 (Vi (Seal (@0(0)) + H (1(5(0)))) Vs, (6 (5 (0) + 6))
HU = F5(5)) 050 (Vo ot (Sel (@1 (0)) Vo ) (65 (1)) + 620))
+ (1= f5(5) b Ly, (6(5(8)) + o) + 7k (Lcsg) (914(5)) = Loy (Prroc))
- %b(s(t)) 00 1(50) Dora(s0)) ((5(1))) + (DL (56 P (s0) ~ Dy o0 Ponp,00) (P0)
FU ) Liivig,, o (Set(onan)) (P(0) + o) + 7k (Lx5(9) (Pr2(5) = Lo, (#h100))
+O(k~ ),
and
(6.22) (dm}iJ)o (o0, R)
1

= sz L oogwk,l,oo (¢o0) — igwc,uoo (vgww,oo Scal (Wk,l,oo) 7vgwk,l7oo (¢00)>

1 _ _
+§9wkvl,oo (27“k 1ngk‘lyoo Hj v, (Wkioso), V Tort.o0 (gboo)) —2rk 1}[)(19 (Whioo) — R

= D ka,l,oo (foo) — Hx, (Wk,l,OO) - R+ O(k_(l+1))-

Wk 1,00
This implies that if we define the difference operator
Dk,l : W£p+1,q,w5(s) (gk,l,oo) X L?L(p+1) (gk,l,oo) X Rm+1 — W4,p,q,w5(s) (gk,l,oo) X L?Lp(gk,l,oo)
by

(6.23) Dt ($(5(1)): oo, sR) = (D (&(5(1)), b V) DY (B0, 0.R) )

)
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where
DY (6(5(1)), 6oer) = ~-0(5(1)) + D0, o0y Doty (B(5(1))
(D015 D (5(1) ~ Dt o0 Do) ($0)
+rk~! (EXg(s) (Pri(8)) = Loy (Sok,z,oo))
+(1 - fs(s)) Ek,lvs_vgwsw (Scal(wna(®)) (G(5(1) + Poc)

Dl(czl) (¢ ¥, R) = @Zk L oo@wk 1,00 (o) — 2Tk_1HX19 (Wk: l 00) - R,

then byand with respect to the operator norm ||| induced by the norm on Wy ;11 g . (s) (9k,1,00) X
Lz21(p+1)<gk,l,oo) we have

(6.24) | (i), - Dy < Cr=0+D,

To prove Proposition [6.2] we wish to apply the following basic functional analysis lemma to
(dC,iOO and Dk,l-

Lemma 6.3. Let D : V — W be a bounded epimorphism with bounded right inverse Q. If L:V — W
is another linear map with

lc—Df < @lel)™

then L is also an epimorphism with bounded right inverse P satisfying
Pl <2]Qll-

To use this lemma, we need to know that the hypotheses apply to Dy, ; and H (de l) — Dy lH This,
as well as the fact that the conclusion of this lemma suffices to give the conclusion of Proposmon-
is a result of the following lemma combined with equatio

Lemma 6.4. The operator

Di s Wi it (s) (ko) X Lian) (Ghto0) X R™ X R = Wiy g () (Gk00) X Lip(9k1,00)

1s well defined, and an epimorphism of Banach spaces. There is a constant C such that for all
sufficiently large k, the right inverse Q. satisfies

(6.25) I Ok ((¥(s(t)), ¥oo)) ”W4,p+1,q,w5(s)(gk,l,oo)XLi(p+1)(gk,l,oo)
< ORS00 Iw, oo 06,000 % 22, (0100)
Proof of Lemmd6.4 We may solve the two equations
(@ (()) P, V) = (1)
o (90,0.C) = e,

for any (1(t), Yoo) € Wi p g .w.(s)(9k100) X L4p(gk71700), since we may write these equations as

B0 + D240y Doty (9(5(1))

+(1— fs(s)) L E ek Vo, oo (Seal(wea®)) (B(s(t)) + poo)
(6.26) = —(D%, (st Dwra(s(t)) — @Zklm wito0) (Po0)

—rk ™ (Lixs(e) (91a()) = Lanxy (Prioo)) +1(s(0))
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and

QZ);CJ,OO@WI@,Z,OO (¢00)
(6.27) = 2rk ' Hx, (Wkio0o) + R+ too.
To solve the second equation we may choose (¢, R) so that
))(@Zjoo) = _HX19 (Wk,l,oo) - R7

and so for this choice, the right hand side of the second equation above is orthogonal to

Projker o 9

(w1 (Joo,h)) = (W 1 (Joo sk

ker@ka’l(Jomh))@(wkyl(‘]m’h))~
We write (s for the flow of the vector field

(1= F5(3)) (F'Va 4 Voo, o (Seal (@ra(#))) -

Since this vector field is 0 for s € [25,00), (s is constant in s on this interval, and therefore we
may write the pullback of this equation by (s:

0
%C:(‘b(*s(t))) + ngwk,z(s(t))ngk,z(s(t)) (C:(‘b(s(t))))

1 1
= G <((Qik,xs(t»@wk,z(s(t» = D5 D) (60)) +1h 7 (L) (20(5)) = Luxy (Phioo)) )

. 1
<s ( ((1 - fS(S)) LkilVS_vgwa(s(t))(Scal(wk»l(t))) (¢oo)) + @b(t)) )

so writing ¢(s(t)) = ¢ o (s, and since (q is constant for s € [25,00), and in particular bounded, we
obtain an equation of the form

0~ ~
52 005(0) D (50) Dczinatsto (B5(1)) = (1)

where @(t) € Wi p g—1,w.(s)(9k1,00) and where IZ(t) is L2 orthogonal to the kernel Of@z;wk 1o Dt w0
and therefore this equation has a solution by Theorem and therefore, Equationy has a
solution ¢(s) in the space Wy 11 g w.(s)(k,l,00)-

This shows that Dy, is surjective. We therefore obtain a right inverse to Qj; to Dy ; defined by

Okl (%(t), ¥oo) = (&(t), s, ¥, R),
where
—2Tk71HX19 (wk’lm) —R= l/JCJ;O
and where the pair (¢(t), poo) solves equations and respectively. It remains to prove the
estimate Note that by Lemma 41 of [B], there is a constant C, such that for our choice of

(197 R)7
sz(gk,l,oo)>

C (quooHLz(g,W [0y D (B00) = 2k Hx, (wh100) — R

[éooll L2

4(p+1)(gk,l,oo)

e (nqboonp(gkm) + | P (6 0.10)

)
L?m(ﬂk,l,oo))

and by Lemma 39 of [B], there is also an estimate

(6.28) |6soll 12(gy s ) < CK? H@ Dy (Bo0) — 2k Hi, (whio0) — R

Wk, 1,00

Lzzlp(gk,l,oo)
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and therefore obtain an estimate

oz, i < OF DL P (00) = 20 Hy raoe) = By
LC H%l Dy oo (Do) — 20k Hx,) (Wi 100) — R\ L2 (g1 100)
< oF ngk LoD (B00) = 27k Hix, (wh00) — R’ L2 (g1100)

= K el g0

By Lemma above, for the choice of solution to the initial value problem where the initial
condition is set to ¢g = 0, we also have an estimate

< ([Jos)

and since the (s is bounded, we obtain an estimate:

’W4(p+1),q,wg(s) (gk,l,oo) HW4,p,q—l,w5(s) (gk,l,oo))> ’

[(&(s(1)) HW4(p+1),q,w€(s)(9k,z,oo)

* * 1L
< O [ (500 Pensts(0) = Dy D) (60))

1

+ Hw<8<t))!\W4,p,q,wg<s><gk,z,oo>>>

Wi p.g—1,we (s) (9k,1,00)

+C|rk™! (5)(5(5) (P 100) = Lo x, (@k,z,oo))
W4,p,q—1,w5(s)(gk,l,oo))

1
w15 £y, (saonsto)) )

_Vg

w1 (s(8))
o Wi p.g—1,we (s) (Ik,1,00))
Clearly we have estimates

1

<(1 ~ fs(s)) Ek_lVS_vgwk,Ms(t)) (Seal(wi(t))) (gbOO))

W4,p,q—1,wg(s)(gk,l,oo))
3
= C ||¢OOHLZ(P+1)(QI€,Z,OO) <Ck ‘|¢00||L2 o (Gk.1.00) 7

(20Dt = D P ) 00))

3
< Clidsollzz, | (grioe) = CF l1oollz (g0 -

since (1 — fg(s)) is supported on a finite interval, and the operator norm

W4,p,q—1,w5(s) (gk,l,oo)

|22 500 Penatstn) = D e Do

has finite integral when multiplied by the weight function, and where we have also used estimate

We may write
k™! (EXS(S) (Ort00) — Lyox, (¢k7l7m))
= k7 (fs(s) = 1) Lxs () (Phic0)
= (fs(s) —1)2rk™ Hx, (wk100)
= (1-fs(s) (V& +R),

so that

-1 1
rk (ﬁxg(s) (Pht.00) = L xy (sok,z,oo))

W4,p,q71,w5(s) (gk,l,oo))
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= | = ssts) v

since again (1 — fg(s)) is supported on a finite interval. These estimates then combine to give:

<C
W4,I?7Q—l,ws(8)(gk,l,oo)) o ||woo”LZp(gk’l’oo) ’

3
IS w111 0o g0) < C I v o araey + R Ml 22 )

Note also that we have by construction (since Hx,(wko00) is L? orthogonal to the constants)
that

‘ L3, (9k,1,00) = (||HX19(wkloo)|L2 Gk o0 +|R|>
> C (19113, (g0 + IRI)
= C(I9l+ IR,

by formula and the argument of Lemma [4.15
Then finally we obtain the estimate

19k (¥(t), Yoo

)HW4(P+1),q,w5(s)(gk:,l,oo)XLi(erl)(gk,l,oo)XRMXR
= H((;S(t), ¢007197 R)||W4(p+1) q, wg(a)(gk 1 OO)XLi(p_;'_l)(gk,l,oo)XRmXR
= IO e o + 15002 (e + 1911+ R

C (I, , . oo grrmy + 5 HwoouLgp(gk,l,w))

O (160, Yo0) Iy oy (e ¥ (0000
as stated. ]

IN

IN

Finally we have the

Proof of Proposition[6.3. By Lemma [6.4] we have an estimate on the operator norm
1Qxall < CK,
so in order to apply Lemm to (dC,il)o — Dy 1, we need that
|(dCE o = Di|| < O,
By estimate this will be acheived whenever [ > 3. The result follows immediately. O

6.3. An estimate on the non-linear term. As in the sketch in Section we define /\/}fl =
le,l - dC,ﬁl. This is the analogue of Lemma 7.1 in [F| Lemma 44 in [B].

Proposition 6.5. Let k > 3. There are positive constants ¢ and K, such that for all

(6(5)s boos V1, R1) 5 (1(8), oo, V2, Ra) € Wiyt () (Gioo) X Lips1) (Ghio0) X R™ X R
with

IN
o

|| (Q(S)a Oco) 1917 Rl) ”W47p+17q,ws(s)(gk,l,oo)XLi(p+1)(gk,l,oo)XRmXR

INA
o

1608), Yo D2 Bl oo <2 () R
and for k sufficiently large,
HNkl ); 000s 91, R1) — N, (1/1(3)71/1007192=R2)H
< Kmax {[[(e(s), 0o0; V1, R1)||, 11(5), oo, P2, Ral} [[(0(s) = 1(s), 000 = thoo, U — 2, Ry — Ro)|
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where on the left hand side the norm is the norm on Wy p, o1 4. (s)(9k,1,00) X Lglp(gk‘,lpo) xR™ xR, and
on the right hand side, the norms are the norm on Wy pi1 g . (s)(9k,l,00) X LZ(erl)(gk,lpo) x R™ x R.

Proof. If we write

[(d)( ) d)OO?ﬂlaRl) (¢(S) 7%0,’192,32)]
= {w( ( ) ¢C>071917R1) +( )(1/}(3)71/1001927}22)‘ w e [07 1]}7

then by the mean value theorem,we have

HNI;:S:l (¢(5)7 ¢OO$ 1917 Rl) 7-/\/’12:5:[ (¢(5)5¢Ooa 292; RQ)H
< s (avg) () = 9(5), oo — s 1 — 03, B — F3)]|
(X(s)7X007197R)

where the sup is over all (x(s), Xoo, ¥, R) € [(0(8), 000, P1, R1) , (¥(8), Yoo, V2, R2)].
By construction, we have

AN = d(c? — (dc?
( kJ)(X(S),Xooﬂ%R) (’“’l>(x<s>,xooﬂ9,R> ( ’“>o
= (4 Th0) () xoest) ~ UThD)05 AFk 1) (o0, R) = AER) (0.0, ))-

(x(8),X 00,0, R) H |

Using formulas [6.15] and [6.16] we may calculate the directional derivatives of 74; and kg, at
(x(8), Xoo, ¥, R) and 0 respectively, in the direction of (¢(s), boo, ¥, R/) to obtain

(d (Tk,1) (3 (5),x009) — d(Tk,l)o) (¢(5),¢oo,19/)
= (dpwnm) = o) (Scaly o) = Scaluy, . ) (6(5), 6oo)
+Lx5(5) (D(5) + doo) = L Xy (foo) + EX; () (X(5) + Xoo) = Lox,, (Xoo)
= (o) = o) (Sealy ) = Scaluy, . ) (6(5), 6oo)
Ly () (H(5)) + (EXg(s) - EJong) (foo) + ﬁxj, () (X(8) + Xoo) = Liwex, (Xoo) 5

(d(ﬁk,l)(xoo,ﬁﬂ) — d(/‘ik,l)o) (Qsoo; 19/7 Rl)

- (d(XOO7197R) - do) Scalwk,l,,oo (¢00)
L, (B0) + Lrex,, (Xoo)

so that we obtain

/ /
() oy (0051000 )
X S X0 ) W4,p,q—1,w5(s)(gk,l,oo)XLZp(gk,l,oo)XRmXR

S H (d(x(t)&(oo) — dQ) (Scalwk’l(t) — SClek,l,oo) ((;5(8)7 (;500)‘ W4,pyq_1,w€(s)(gk,l,00)
r Lysio—L -
+ Xg(s) ((b(S))‘ Wi p,q—1,we (s) (9k,1,00) + H( Xg(s) JOOXﬂ) (¢ ) Wi,p,g—1,we (s) (9 1,00)
+£SSXS+XOO‘ + 1 Lyx, (Xoo
X )( (5) ) Wi, p,g—1,we (s) (k.1,00) H ! ( )‘ Wasp.a=1,ue ) (k. 1,00)
+ (dXoo — do) Scalww”m (Qboo) L?lp(gk),l,oc) + HEJOOX19 (¢OO)HL421p(gk,l,OO) + [:JooXﬁ/ (Xoo) Lip(gk,l,oo)
< K (H(X(t), XOO)”W4,p+1,q,ws(5)(gk,l,oo)XL?l(P+1)(gk,l,oo) [I(e(s), ¢°°)HW4 ptLawe () (Gt00) X L3, 1) (Gk0 °°)>
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191 Nbsellzz (g + ] (1w ) + IXo0l22 (010))

K (
(0] I 1 0+ el Iz, )

K (

(

4

191 ool ze gy + ]| Io0llzz (g0rer)

1O, 1o o) + X0l122, g1+ 191)

7[)

IN
=
—~ —

X

(O PR S N P
K (I0c(5), Xoor 9 B - | (6(5). 009, B )
< max{]|(e(s), ser 1, BRI [((5), Yoo, 0, Bo) [} - | (6(5), 6,9, )

where we have used the bound

IN

?

” (X(S)’ Xoo» ,19’ R) ||W4,p+1,q,wg(s) (gk,l,oo)XLEp(gk,l,oo)XRmXR
S maX{”(Q(S)7 Oc0) 1917 RI)H ) ”(¢(3)a @Doo, 192a RQ)H} S ¢,

and also Lemma where we note that the proof of the latter works just as well for the metrics
Ok 1,00 a8 for gi 1.00. We therefore obtain a uniform bound bound on the operator norm

(W5 | < ) 2o 91, R N (5) s, B ),

and the result follows. OJ

(an35))

6.4. Proof of Theorem Clearly, Propositions and establish the following two prop-

erties.

(i) The derivative of the map C,*:” ; at 0 is an epimorphism, whose right inverse P, ; which enjoys
a uniform estimate

3
H’Pkyl ((wtv woo))HW4,p,q,w5(s)(gk,l,oo)XLZP(gk,l,oo)XRmXR S Ck H<¢t7woo)HWzl,p,q,wg(s)(gk,l,oo)XLip(gk,l,oo)

(ii) The non-linear part of C',i ;> namely Ny = le, 1= dC,i ; has the property that there exists
a constant C' such that for all sufficiently small M, Ny is Lipschitz with constant M on
a ball of radius CM.

Given these facts, the existence of a solution to equation follows. Namely, points (i) and (%)
above combine to say that the radius ,, of the ball B s (0) on which Ny is Lipschitz with constant
k

2
1Pl

is bounded below by

2¢ > Ck~3.

06.29
(6.29) Pl =

Then defining

’ 2
6.30 0 =90
(6.30) k= O (rmJn)

as in Theorem [6.1], we obtain that

(6.31) 0> ——— > Ck™S,
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and therefore by Theorem
S () < (6
HCk,l(O) (wt’wOO)HWzl,p,q,ws(s)(gk,z,oo)XLip(gk,z,oo) < Ck

implies that there is a solution (¢(s(t)), doo, ¥, R) to

(6.32) C1((s(1)), boos 9, R) = (¥(s(t)), too).

In particular, by the Sobolev bound for [ > 6, Equation has a solution for every .S, and
therefore since up to time S a solution to this equation is equivalent a solution to the latter
will have a solution for all time.

7. APPENDIX

7.1. Linear parabolic equations on compact Riemannian manifolds. In this appendix we
will state and sketch the proofs of the existence, uniqueness and regularity theorems, for linear
parabolic PDEs on compact Riemannian manifolds. These theorems are probably more or less
standard, but it seems difficult to find precise statements and proofs of them in the literature. One
source is Huisken and Polden, and we will follow their basic approach here, but our treatment will
be slightly more streamlined, and we will also modify the norms that are involved to accomodate
our particular problem.

7.1.1. Notation and basic definitions. Throughout this appendix we will let

(E7 <_7 _>) - (M7g)
be a smooth complex vector bundle over a Riemannian manifold with an Hermitian metric (—, —)
on E. In practice, E¥ will be either the endomorphism bundle of another vector bundle, or the trivial
line bundle. We will consider the theory of equations of the form

P04 Lt = 100,
where L(t) : I'(F) — I'(F) is a 1-parameter family of differential operators of order 2d. We will
assume that that L; is self-adjoint and strongly elliptic for each ¢. Recall that self-adjoint means
that (Lyu,v) = (u, L) for all u,v € E,, and all x € M. To define strongly elliptic, we recall the
definition of the symbol of a differential operator. If L : C*°(E) — C*°(F) is a differential operator,
then for each u € T'(F) in local coordinates we have

[6%
Lu= Y L° g .
laj<2a  9*
where L* : E — F is a bundle endomorphism and o = (aq, -+ - , ) is a multi-index. The principal
p ) ) P P

symbol is given by o(L) : E @ T*M — E is defined by
U(L’ x)(ﬁ)(v) = Z fgl . gl?;zdLa(,U)
|a|=2d

where © € M is any point and 0 # ¢ € T'(TF M), written locally as & = &da’. Then L is called
strongly elliptic (or sometimes uniformly strongly elliptic) if there is a constant ¢ such that for
all z € M and all 0 # £ € T(T; M)

Re ((o(L,)(€)(v),v)) = c[¢[*

for all 0 # v € E,. Note that this implies in particular that for each x € M and 0 # £ € I(T; M),
o(L,z)() : E, — E, is an isomorphism, which is usually taken as the definition of an elliptic
operator.
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Remark 7.1. From here on out, we will also assume that the set ker(L;)= K C C*°(FE) is inde-
pendent of t. This is of course trivially satisfied when L; = L is just a constant path of operators.

7.1.2. Some results from functional analysis. We will also have need of Garding’s Inequality,
which states that for a a strongly elliptic operator L of order 2d there exist constants C; > 0 and
Cy > 0 such that for every u € L3(E),

Re (Lu,u) s > Cu [[ul3; — Co ul3.
If there furthermore exists an M > 0 such that
Re (Lu,u) > M |72,
for all u € L2(E) then by Géarding’s inequality

Re (Luyu) s > C [lul2;

M

definite, then so is L*L, and therefore

where C = 0 0102). In this case we say that L is positive definite. Note that if L is positive

2 2
|Lul2: > C ull25,

In particular, if L is positive definite, the ker L = 0. If L is also self-adjoint then cokerL = ker L* =
ker L = 0, so L is invertible. We will call L positive semi-definite if Re(Lu,u);» > 0. If L is
positive semi-definite, then clearly L + Id is positive definite.

For a complex Hilbert space H with norm |-||;;, and H C H a linear sub-space with norm ||-|| o
such that the inclusion H < H is continuous. The key result we will need to prove the parabolic
existence, uniqueness, and regularity theorems is the following result of Lax-Lions-Milgram.

Theorem 7.2. (Laz-Lions-Milgram) Let B : H x H' — C be a sesquilinear form with the following
properties

1. Continuity. For all fized ¢ € H', the map given by v — B(v, ¢) is a continuous linear map
H - C.

2. Coercivity. There is a constant A\ > 0 such that for all ¢ € H' , ReB(¢,¢) > X ||¢H§{ .

Then for any continous linear map F : (H',|-|;) — R, there exists v € H such that for all
¢ € H, B(v,p) = F(¢). Furthermore ||v||; < SIF|l, where | F|| denotes the operator norm.

7.1.3. Parabolic Sobolev norms. Now we will introduce the norms that will be used for parabolic
theory. The primitive form of the norm will be defined as follows. Let w,(t) be a smooth, real-valued,
weight function (to be defined later), and define the parabolic Sobolev norm || — ) of
compactly supported function smooth function f € C§°(M x [0,00)) by

oo
2 o 2 2
B = [ R 171,

To prove this is a norm, the only (slightly) non-trivial property to check is the triangle inequality.

‘ |V2k,wE (¢

This follows from the triangle inequality for||—|| 12, and Hoélder’s inequality on [0, c0). Namely:
2 > 2 2 > 2 2
400 = [ ORI+ ol de < [T loaOF (16153, + ol ) a

o0
. 2 2 2 2 2
= [ (e OF 171, + 2 e OF 11, N, + o) gl )

2 2 2 2
10+ 200l Nl o+ lalR,

IN
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= (HfHVQk,wg(t) + ”g||v2k,wg(t))2‘

Now we fix a subspace K C E

Definition 7.3. We define the the primitive parabolic Sobolev space with weight w.(t)
relative to K to be the completion Vay . 1y (E, K) of the space K+ N C§(E, M x [0,00)) with
respect to this norm, where K+ C L*((E, M x [0,00)) is the L? orthogonal complement of K .

To obtain strong solutions of our parobolic equations, we will need to develop a regularity theory
for solutions of parabolic equations, which will require a more sophisticated version of this norm.
Namely, for each triple of non-negative integers d, p, and g with ¢ < p and a smooth function weight
function w.(t) on the interval [0,00) with w.(0) = 0, we define a family of parabolic Sobolev

norms H'”Wd,p,q,w on the space C§° (M x [0,00), pi;(E)) of compactly supported sections of the

e(t)
bundle p},(E) over M x [0,00) (where pas : M x [0,00) — M is the natural projection) by:

4 Pot)|’ ~ | @ig(t) |
2
6O, o0 =2 [ oOF |75 ar=3 |2
j=0"0 N ) =0 Va5 (9)
For ¢(t) € C§° (M x [0,00),p}3;(E)) this is clearly finite and, is a norm since H_H%/zd(p,j)(g) is a
norm and g—i is linear. We will furthermore set
Wty = M0ty -

Let K C E be a fixed subspace.

Definition 7.4. We define the parabolic Sobolev spaces with weight w.(t) relative to K to
be the completion of K+ NCS® (M x [0, 00), p',(E)) with respect to these norm, where K+ C L?(E)
is the L?-orthogonal complement of K. We will denote this space by Wi p.sw.t)(E, K).

Remark 7.5. In practice K C E will be the kernel of the operator L;, which we will assume to be
independent of t.

Remark 7.6. In order to make the parabolic theory work in our setting we will define the weight
function to be w.(t) = e "Mt==¥(®) where 0 < € < oo is a positive real number and 7(t) and ¥(t)
are smooth functions defined below, which in particular will make w.(¢) a smooth function with
we(0) = 1.

For our purposes we will need to impose the further restriction that the Sobolev norms in the
definition of the Wy, ;) norm vanish at infinity.

Definition 7.7. We define the space W E,K) = Wy, qw.)(E, K) to be the subset

p,q7ws(t)(

W e 0 K) = 100 € Wity g (B, K| limm 100 (80)llz, =0, for all 0< j < q}.

Lemma 7.8. Forp > 1, the subset ngq ws(t)(E, K) is a closed subspace of de’q,wg(t)(E, K), and

therefore a Banach space.

Proof. Wg (E, K) is clearly a subspace, so it remains only to show that it is closed.

P,q,we (1) , _
First of all, for a path ¢; € Wa ., 1y(E, K). Thinking of /(¢;) as a map 9{(¢) : [0,00) —

Lfl(p_j)(X), since we(t) is smooth we have that for any finite number S, and each 0 < j < ¢,

() € L%([O,S],Lfl(pij)(X)) — Cl([O,S],Lg(pfj)(X)), by the (Banach space valued) Sobolev
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embedding theorem, and therefore ¢, has p strong time derivatives. In particular, for each 0 < j < g¢q

&
1 6lles,
is continuous as a function on [0, 00).
Now take a sequence ¢ ; € deqw ) (E, K), and suppose ¢¢; — ¢ in the norm || — HWd,p,q,ws(t)
for some ¢y € Wy, ¢ w.r) (M, E). Explicitly this means that
oo .
i 1160 = G0,y 0 = Zgggo [ weor e oo, =0
In other words
w-(t)[*1|0] (61,4 — 1) — 0
: H Z ’Lgd@ »
in L1([0,00)) for each j. Therefore there is a subsequence (which we still denote by ¢:;), which

converges pointwise almost everywhere. Since |w.(t)|?

[0,00), we have

> 0, this means that for almost every ¢ €

hm Ha (¢t — ¢t)‘

LZd(p J)(g)
for each j.
Now fix § > 0. Then there exists an ¢ such that
Hﬁj (e, — th)} <4/2.
gd( )(g)
Since ¢y ; € dew (t )(E,K) we may find T >> 0 such that for ¢ > T, we have
|0 (614) < /2
2d( )(g
for each j. Then for almost all ¢ > T we have
GACH! < |0} (¢t — ¢1) + A <49,
H ‘ 2d(10 7) ©) H Z ‘ 2d(p J) H Z Lgd(p J)( 9)

for each j. Since H@g (dr) is continuous, this must hold for all ¢ > T'. Therefore

L§d< )(g)
hm H@J ot) ’ =0
Liap-(9)
and ¢; € W(gpqwe( )(M K), and Wc(l]p q,ws(t)(M K) is closed. Since a closed subspace of a Banach

space is a Banach space, this implies that WC? (t )(E , K) is a Banach space. U

P4, We

7.1.4. Linear equations with a time dependent operator. We will now prove state and prove a low-
regularity version of the existence for solutions of linear parabolic equations whose forcing term lies
in a parabolic Sobolev space.

Theorem 7.9. Let L; be a self-adjoint, strongly elliptic, semi-definite operator of order 2k for all
L2(g) — 0 (so that for any 6 > 0,
there is a T >> 0, so that ||0¢L|| 2y < 6 for t > T); and in particular Ly converges to a self-
adjoint, strongly elliptic, semi-definite operator of order 2d, denoted by Lo, = limy_,oo Ly. Then the
exists smooth functions n(t) and (t) on [0,00), with n(t) < 0 and ¥(t) > 0 (and vanishing in
a neighbourhood of 0, so that in particular w.(t) is smooth) such that given any € > 0, and any

t, assume that Ly is a smooth family, and assume that H%
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9 € Vow.t)(E),with g(t) L ker(L;) for eacht, and fo € L2(E), there exists a unique f € Vak,w. 1) (E)
so that Oy f € Vj q1)(E)), which solves the initial value problem

w—i—Ltf(t) = (),

ot
f(0) = fo

Furthermore there is a parabolic estimate
2 2
HatfHVO,wg(t)(g) - HfHVZk,wE(t)(g)
< C(Ifollzzgg) + I9llyy o 0))

where the constant C' depends only on e,n(t), ¥ (t) and L.

Proof. We will put ourselves in a position to apply the Lax-Lions-Milgram theorem, which requires
us in particular to produce a subspace H C Vi . (1), @ sesquilinear form B : Vj . ) x H — R,
and a bounded linear functional F' : H — R. To motivate the definitions, notice that if f &
C§°(M % [0,00)) solves the initial value problem

hf+Lif = g
f(0) = fo,

where L(t) is for each t a self-adjoint elliptic operator of order 2k, then integrating by parts and
writing (—, —) for the L? inner product we must have

| P gLt = [P @uf + s L) d = [ )P (01, Lid) + (LS. Loy
0 0 0

[e.9]

Z/OOO jwe(4)1* ((Lef, Led) = (f, 3t(Lt¢)>)dt—/0 2w (t)w,(t) (f, L) dt — {fo, Log(0)),

where for the moment we will write the weight function as w.(t) = e~ M=) where n and ¢ will
be defined later, with the understanding that the chosen functions will make w.(t) smooth with
w:(0) = 1. Endow the space C§°(M x [0,00)) with a norm ||—||; given by

2 2
191 = ICO)Z2 (ary + 121V; 00

and write H for the corresponding normed space. Clearly H <V} ,,,_(y). Then define the sesquilinear
form B : Vj ) X H— R by

B(f.¢) = /0 P (O (Lo, Lud) — (F, h(Led))) — 2w (60w (8) (F. Led) dt,
and the linear functional F': H - R
F(6) = (fo, Lod(0)) + /0 " e (t)? (g, Lugy)

Now by Cauchy-Scwartz we have

[B(f,9)] S/O [we (OF (ILef || g2 1Le ] 2 + 1F | 2 10 (Leg) | 2) + 2 [we (1)) w;(t)‘ 11l 2 (1Ll e -

Now if

w;(t)‘ < Cwe(t), then we have that

BUAI<C [ el 113, dt = 17 et
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so that the map W — R given by f — B(f,¢) is bounded. Similarly, integrating by parts and
applying Cauchy-Schwartz gives

[F(o)] < Clifollx ||<1>(0)||ye+/0 jwe (1) [lgll 2 1L 2 dt

A

00 o 12 , poo o 1/2
< C<||f0|Lk||¢>(0)||Lk+</O o lolfaat) ([ oo 101, at)
= (Ifoll e 16O + 1912 e 161123
< C(Ifollx + 19135 nry) (16O 2 + 1Dl 00y )

= O (Ifollx + 1905, n0y) 161 = C I8l

so F': W — R is also bounded.In order to apply Lax-Milgram-Lions we need to check coercivity.
First notice that, using the fact that L is self-adjoint:

A(lwe(®)* (¢, LB)) = 2we(t)w (t) (p, L) + [we(t)]* ((Dp, Leo) + (¢, Dy (Le)))
= 2105(75)10 (1) (o, Lt¢>+|wa()|2(<Lt(8t¢) ¢) + (b, (0rL¢)(9)) + (@, L(0(9))
= 2we(t)w (t) (o, Lt¢>+2‘we(t)‘2(< ¢, (0¢Lt)(¢)) + (¢, Li(0¢())) — ‘ws()’ (¢, (0:Lt)(9))
= 2w(t)w (£) (¢, Led) + 2 [we ()] (6, B (Led))) — |we(t)[* (b, (B:Le) () -
Now
(6(0), Lo(0)) = 0°° Oy (1) 2 (6, Les) )t
= /0 2w (' (1) (6, Lud) + [we(t) (2 (6,04 (Lid))) — (&, (D)) .

| @) (0.0 (L) dt = 3 (000, 260) - | w0 (0nLopderg [ w0, @)@ dr.
0 0 0
From this it follows that

B(¢,¢) = /O e (ILe6l22 = (6,00(Le6))) — 20 (1) (6, L) dt
= [ et (Il 5 (00 @L(N) ) ~ welew' ) 6,Lis) + 5 [wO)F (9(0), Lid(0).

If we assume L, is positive definite for all ¢, then Garding’s inequality applies to give a constant ¢
such that

(0(0), Lt(0)) = c[¢(0)] 12 -
and
ILeo(D)72 = cllé®)llz, -

where for the second inequality we use the fact that (L;¢(t), Lip(t)) = (LiLid(t), ¢(t)), and L? is
a positive definite elliptic operator of order 4k. By Cauchy-Schwarz we have

(6. Lp()] < C @lI72 < Cllol72, -

Furthermore we may write

1

1 1
=5 (9, (0Le)(9)) = —5 |0 Lell 2 o)z > =5 10 Lell 2 I9lzz,



LONG-TIME EXISTENCE FOR THE CALABI FLOW ON RULED MANIFOLDS 111

where ||0;L|| ;2 is the operator norm induced by the L? norm. Then we obtain
e 1 ! !/
Bo.0) = [P el g w0 1Lz 161, - Cuettyw’ ()11, i+ 160)]

o0 1 !/ !
= [ () = G0 10l 2 = Cult)) et 1, dt+ € 16001
so we want that 1
cwe(t) = Swe(t) [0 Li 2 — Cur(t) > € we(t)

for some constant ¢’ > 0, so that

Bo.0) > ¢ [P 100l de+ 1003

= H¢(O)H%i(M) + 161 ey = Il »
establishing coercivity.

Fix § > 0, small enough so that ¢ —J > 0 and choose any sufficiently large 7' € [0, c0) so that
10:Le|| ;2 < 6 when t > T. We will set w.(t) = e "t==¥(") where ¢ > 0 is an arbitrarily small
number and 7(t) and 1 (t) are smooth functions defined as follows. Let x be smooth cutoff function
which is 1 on [0,7] and is supported in [0,27"). Then define n(t) = a(t — 27)x(t), where

1
a= sup = [|0:Li| 2,
+e[0.T] 20 ‘ HL2
and let ¥(t) = 1 — x(t), so that ¢ is 1 on {T/, oo) and supported on [T, 00), and so in particular

the weight function w(t) is smooth and equal to t~¢ on [T/, oo)
Then notice that we have

Rt A (e_n(t)t_w“)n/ (£) + e =<v®) (w'(t)ln(t) + wi’f)))
= et (n/(t) t+e (w'(t)ln(t) + wi”)) .

Since In(t) is only unbounded near 0 and oo (where 1’ () vanishes), ¥’ (t)In(t) is clearly bounded.

Similarly, since % is unbounded only near 0 (where 1 vanishes), ¥® s also bounded. Therefore

t
Y(t)

v (B)n(t) + =

is bounded, and therefore so is

70 +2 (v i) + 22)
since 17 (t) = a x(t) + a(t — T')x (t), and y is supported in a bounded interval.
w-()w' (t)| < C (),

and this gives the boundedness stated above. Then let us analyse the quantity

1 ,
cwe(t) = Fwe(t) |0eL 2 — Cw ()

_ <c - % 16:L 2 + C (n’(t) e (wl(t)ln(t) + Wt)))) w(t).
We need that
. % 16 2 + C <n’(t) be (wl(t)ln(t) + 7’2)) >\ > 0.
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for all ¢ € [0,00). For t € [0,T7], by construction this is

1 /
¢ =5 IaLll e +Cn' ()
1
= C— 5 ||atLHL2 + Ca

1 1
= ¢— = ||0¢L|| ;2 + sup = [|OcLill ;2 > ¢ > 0.
2 te[0,1] 2

On the other hand, for ¢ € (T',00) we have that ¢ — 3 [|0,L| ;2 > ¢ — § > 0. We also have

/

0 (t) = ax(t) +alt = T)X (1) > 0

since ax(t) is non-negative by construction, x (t) < 0 and a(t—T') < 0 for t € [O, T/} and X (t) =0
for t > T'. Also note that e (wl(t)ln(t) + @) > 0 (notice that 1 is positive and increasing), so

- % 1O:L| 2 + C (n’(t) +e (¢/(t>l”(t) - w?))

1
= c—§||8tLHL2 >c—6>0.

Then F and ¢ — B(f, ¢) are bounded, and B is coercive, so we apply Lax-Lions-Milgram, so that
F(¢) = B(f,9)

By the Lax-Lions-Milgram lemma this gives the existence of a u € Vg () (F) such that we have
B(u, ¢) = F(¢), for each ¢ € C5° (M x [0,00), pi;(E)). This means that

/wmmwﬂaf+uﬂL@wﬁ:/mhMMQ@L@>
0 0

where 0, f is interpreted in the sense of distributions, with the boundary conditon f(0) = fy. Because
L, is invertible any section of C§° (M x [0, 00), p};(E)) is equal to L¢¢ for some ¢, this implies that
f is a weak solution to the equation O;u + Lyu = f. This also implies that 0, f € Vi () (E), since

<atua ¢>V0,w5(t) = <f - Ltuv ¢>V0,w5(t) for any ¢
Finally, the last part of the Lax-Lions-Milgram lemma gives the estimate [f|y, o (E) <
SIF| = §sup F(¢), and we have shown

F () < C (Ilfoll o + 9llvewry) 1611
so that
11y o o) < € (1ol e + N9l ey -

Since 9, f = g — Lyu, we have

19 f 1wty < N9V 0ty + 1 i) -
so that

10: vty + 1 M2 < € (ol + N9l )

which is the parabolic estimate in the statement of the theorem. ]
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7.1.5. Higher regqularity.

Theorem 7.10. Let Ly be a family of elliptic operators of order 2d, converging smoothly ast — oo
to a self-adjoint semi-definite, strongly elliptic differential operator of order 2k denoted by Lo, so
that in particular ||0yL¢||r2 — 0. Assume furthermore that ker Ly C ker Lo for all t. Let K C E
a subspace such that ker Lo L K so that in particular ker Ly | K. Then there exists a path
of smooth functions n(t) < 0 and ¥(t) > 0 (and vanishing in a neighbourhood of 0) such that
the such that for any € > 0, the associated weight function w.(t) is smooth, and such that given
any p € N, g(t) € Wy, (B, K) and fo € L%2d+1)p,
f(t) € Wagpi1,q.w.()(E, K) to the initial value problem

there exists a unique weak solution

(7.1) Of(t) + Lef(t) = g(t)
f(0) = fo
There is furthermore a parabolic estimate of the form
1l g < Clfollzz,  + 10 1)

where C depends only on Ly and the weight functions.

Proof. We will now outline how the inductive argument will work before proceeding with the details.
The proof will be by induction on p and g. Note that the case p = 0, ¢ = 1 is Theoren(7.9] Namely,
assume the theorem holds for p — 1,¢. In other words, there exists a smooth function we(t) such
that for each f € Wayq 4 w. (1) and fo € L?l(Zp +1)) SO that f and fy solve the initial value proble

By assumption L' exists. Now as before let g(t) € Wi pamit ey (B K) and ug € L§(2p+1), and
assume for the moment that the system
f: e
o T Lol fe = Loogr
ft(o) = Lo fo
has a solution for f(t) € W,, . (E,K). Then if we set f(t) = LY f(t)
ofi L 0f
ot Ly ot =Ly (Loogt — Loo Lt ft) = 9t — Li ft,
f0) = fo,
so f(t) is the desired solution. Clearly f(t) € W,, ., . (E,K) N Vaopi1)duw. ) To prove the es-
timate stated in the theorem note that:
2 g 2 12
= 0!
||ft||W2d,p+1JLw6(t) %H 0 Je Vad(p+1—3) we (1)
2 S0 |12
< ||af +CY |07 A
|| tftHVQd(P‘Flfq)yws(t) ]22(:) tft VQd(p,j)’ws(w
= 10FAI 7],
”at ftHV?d(p-&-l—q),wa(t) - ¢ ft W2d,p,¢1*1,wa(t)
- 2 ~112
— log=" (g — LoD e +c||7|
H ! (gt oo )) Vad(pt1-q),we () Ji Wad,p,a—1we (1)
g-1_ |2 7112
< ¢ (]l + 7| .
Vad(p+1-q),we (t) Wad,p,q—1,we (1)




114 SIBLEY

In the second line we have used that Lo f(t) = f(£) so that the L%d( ;) norm of & f, controls the

, p—j
L%d(pﬂ_j) norm of & f;. In the last line we have used 8¢ f; = 7~ (g,— Ly f;), used the boundedness of
L;L7} (and its time derivatives) to bound |97 (LtLgolf(t)) |]%/2d(p+1_q) ) by a constant times a

2 -
, which we have absorbed into the term || f;

sum of terms of the form H@th‘ v Wad pgre )
2d(p—j),we (t)

where they already appear. Applying the parabolic estimate inductively to ft we get
2 q—1 2
12l < c(]or gl + || Locgt + || Zuoll 2

2
W2d,p+1,q,'w5(t) V2d(p+17q),wg(t) ”WQd,p—l,q—Q,wg(t) 2d((p1)+1))>

o (Joral;

Vad(p—(q—1),we ()

IN

2
19 o+ ool )

2d(p+1)

2
o (A T PR ¢

2d(p+1)

Note that this estimate also shows uniqueness, since if we apply it to the difference of two solutions,
the right hand side is 0, and therefore the two solutions must be equal.
O
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